An in-silico investigation of biomechanical response of cardiovascular stents during deployment inside a stenotic artery

Document Type : Research Paper

Authors

1 IUST, Iran

2 School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran.

3 School of Metallurgy and Materials Engineering, Iran university of Science & Technology (IUST), Narmak, Tehran

4 TUDelft, The Netherlands

10.22059/jufgnsm.2024.02.12

Abstract

Three commercial stents (Palmaz-Schatz, NIR, and BioMatrix) with either an open-cell (20% open-cell) or a closed-cell (80% closed-cell) design, and one new hybrid stent design were numerically modeled using the ABAQUS/Explicit finite element software (Dassault Systèmes, France) to compare their behaviors during deployment in a stenotic artery. The ABAQUS/Explicit dynamic explicit solver was utilized to efficiently capture the complex interactions between the balloon, stent, artery, and plaque during the stent expansion process. The effect of changing the material from stainless steel (SS 316L) to cobalt-chromium (CoCr) and platinum-chromium (PtCr), as well as the reduced thickness of struts from 0.1 mm to 0.08 mm, were investigated. The new hybrid stent design featured reduced axial strut spacing (from 1.2 mm to 0.8 mm), larger corner radii (from 0.2 mm to 0.3 mm), and smaller amplitudes in the ring (from 1.0 mm to 0.8 mm). For the simulations, a balloon-stent-artery model with plaque and average blood pressure of 80 mmHg was used. The results showed that the new hybrid stent did not perform worse in any of the studied biomechanical parameters compared to the commercial open-cell (20% expansion) and closed-cell (15% expansion) stents, and exhibited better performance in maximum expansion (22%) and recoil responses (5% recoil). Changing the material in the new hybrid stent from SS 316L to CoCr or PtCr improved the biomechanical behavior, such as expansion (25%), recoil (3%), and dogboning (0.9), but increased the maximum von Mises stress on the artery-plaque system by 18%. Reducing the strut thickness from 0.1 mm to 0.08 mm decreased the maximum stress on the artery-plaque system by 12%, but undesirably increased dogboning (1.1) and recoil (7%).Keywords: Finite element method; Stent deployment; Geometry; Material; Stenotic artery.

Keywords


  1. S. Motamed, S. N. Hosseini Karimi, M. Hooshyar, R. Mehdinavaz Aghdam, Advances in nanocarriers as drug delivery systems in Atherosclerosis therapy, Journal of ultrafine grained and nanostructured materials, Volume 54, 2021, 198-210.
  2. M. Shabani, G. Faraji, Processing and Characterization of Natural Hydroxyapatite Powder from Bovine Bone, Journal of ultrafine grained and nanostructured materials, Volume 53, 2020, 204-209.
  3. H. Mirzadeh, Superplasticity of fine-grained austenitic stainless steels: A review, Journal of ultrafine grained and nanostructured materials, Volume 56, 2023, 27-41.
  4. N. Mollaei, S. M. Fatemi, M. Abootalebi, H. Razavi, Zinc based bioalloys processed by severe plastic deformation – A review, Journal of ultrafine grained and nanostructured materials, Volume 53, 2020, 39-47.
  5. R. Sarvari, M. Nouri, L. Roshangar, M. S. Gholami Farashah, A. Sadrhaghighi, S. Agbolaghi, P. Keyhanvar, Conductive Bio-Copolymers based on Pectin-Polycaprolactone/Polyaniline and Tissue Engineering Application Thereof, Journal of ultrafine grained and nanostructured materials, Volume 54, 2021, 64-72.
  6. G. A. Roth et al., “Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015.,” J. Am. Coll. Cardiol., vol. 70, no. 1, pp. 1–25, Jul. 2017, doi: 10.1016/j.jacc.2017.04.052.
  7. WHO, “About cardiovascular diseases. Geneva: World Health Organization,” 2019. [Online]. Available: https://www.who.int/cardiovascular_diseases/about_cvd/en/.
  8. R. Chronic et al., Diet and health: implications for reducing chronic disease risk, vol. 27, no. 06. 1990.
  9. G. N. Levine et al., “2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention,” J. Am. Coll. Cardiol., vol. 58, no. 24, pp. e44–e122, 2011, doi: 10.1016/j.jacc.2011.08.007.
  10. D. Stoeckel, C. Bonsignore, and S. Duda, “A survey of stent designs,” Minim. Invasive Ther. Allied Technol., vol. 11, no. 4, pp. 137–147, Jan. 2002, doi: 10.1080/136457002760273340.
  11. I. Aneta, “Numerical analysis of mechanical phenomena in coronary stent made of titanium alloy Ti-13Nb-13Zr,” vol. 687, pp. 191–198, 2016, doi: 10.4028/www.scientific.net/KEM.687.191.
  12. T. Wu and S. Mccarthy, “Coronary Arterial Drug-Eluting Stent : From Structure to Clinical,” 1900.
  13. S. K. Jaganathan, E. Supriyanto, S. Murugesan, A. Balaji, and M. K. Asokan, “Biomaterials in Cardiovascular Research: Applications and Clinical Implications,” Biomed Res. Int., vol. 2014, p. 11, 2014, doi: 10.1155/2014/459465.
  14. B. J. O’Brien, J. S. Stinson, S. R. Larsen, M. J. Eppihimer, and W. M. Carroll, “A platinum-chromium steel for cardiovascular stents,” Biomaterials, vol. 31, no. 14, pp. 3755–3761, 2010, doi: 10.1016/j.biomaterials.2010.01.146.
  15. Safavi MS, Khalil-Allafi J, Ahadzadeh I, Walsh FC, Visai L. Improved corrosion protection of a NiTi implant by an electrodeposited HAp-Nb2O5 composite layer. Surface and Coatings Technology. 2023 Oct 15;470:129822.
  16. K. Maleckis, E. Anttila, P. Aylward, W. Poulson, A. Desyatova, J. MacTaggart, A. Kamenskiy, Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance, Annals of biomedical engineering, 2018, Volume 46, pages 684–704.
  17. C. Conway, E. R. Edelman, G. S. Karanasiou, N. S. Tachos, and L. K. Michalis, “In silico assessment of the effects of material on stent deployment,” pp. 462–467, 2017, doi: 10.1109/BIBE.2017.00084.
  18. S. Georgia Karanasiou et al., “In Silico analysis of stent deployment- effect of stent design,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2018-July, pp. 4567–4570, 2018, doi: 10.1109/EMBC.2018.8513205.
  19. C. Dumoulin and B. Cochelin, “Mechanical behaviour modelling of balloon-expandable stents,” J. Biomech., vol. 33, no. 11, pp. 1461–1470, Nov. 2000, doi: 10.1016/S0021-9290(00)00098-1.
  20. F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa, “Mechanical behavior of coronary stents investigated through the finite element method,” J. Biomech., vol. 35, no. 6, pp. 803–811, Jun. 2002, doi: 10.1016/S0021-9290(02)00033-7.
  21. S. N. D. Chua, B. J. Mac Donald, and M. S. J. Hashmi, “Finite-element simulation of stent expansion,” J. Mater. Process. Technol., vol. 120, no. 1–3, pp. 335–340, Jan. 2002, doi: 10.1016/S0924-0136(01)01127-X.
  22. S. N. David Chua, B. J. Mac Donald, and M. S. J. Hashmi, “Finite element simulation of stent and balloon interaction,” J. Mater. Process. Technol., vol. 143–144, pp. 591–597, Dec. 2003, doi: 10.1016/S0924-0136(03)00435-7.
  23. S. N. D. Chua, B. J. MacDonald, and M. S. J. Hashmi, “Effects of varying slotted tube (stent) geometry on its expansion behaviour using finite element method,” J. Mater. Process. Technol., vol. 155–156, no. 1–3, pp. 1764–1771, Nov. 2004, doi: 10.1016/j.jmatprotec.2004.04.395.
  24. W. Q. Wang, D. K. Liang, D. Z. Yang, and M. Qi, “Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method,” J. Biomech., vol. 39, no. 1, pp. 21–32, 2006.
  25. Z. Xia, F. Ju, and K. Sasaki, “A general finite element analysis method for balloon expandable stents based on repeated unit cell (RUC) model,” Finite Elem. Anal. Des., vol. 43, no. 1, pp. 86–95, 2007, doi: 10.1016/j.finel.2007.01.001.
  26. F. Ju, Z. Xia, and K. Sasaki, “On the finite element modelling of balloon-expandable stents,” J. Mech. Behav. Biomed. Mater., vol. 1, no. 1, pp. 86–95, Jan. 2008, doi: 10.1016/j.jmbbm.2007.07.002.
  27. D. Lim, S.-K. Cho, W.-P. Park, A. Kristensson, J.-Y. Ko, and S. T. S. Al-Hassani, “Suggestion of Potential Stent Design Parameters to Reduce Restenosis Risk driven by Foreshortening or Dogboning due to Non-uniform Balloon-Stent Expansion,” Ann. Biomed. Eng., vol. 36, no. 7, pp. 1118–1129, Jul. 2008, doi: 10.1007/s10439-008-9504-1.
  28. W. Park, S. Cho, J. Ko, A. Kristensson, H. Kim, and D. Lim, “Evaluation of Stent Performances using FEA considering a Realistic Balloon Expansion,” Eng. Technol., vol. 2, no. 1, pp. 117–122, 2008.
  29. A. Kumar and N. Bhatnagar, “Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength , recoil , foreshortening , and dogboning,” Comput. Methods Biomech. Biomed. Engin., vol. 0, no. 0, pp. 1–15, 2020, doi: 10.1080/10255842.2020.1822823.
  30. W. Walke, Z. Paszenda, and J. Filipiak, “Experimental and numerical biomechanical analysis of vascular stent,” J. Mater. Process. Technol., vol. 164–165, no. 1263–1268, pp. 1263–1268, May 2005, doi: 10.1016/j.jmatprotec.2005.02.204.
  31. C. Lally, F. Dolan, and P. J. Prendergast, “Cardiovascular stent design and vessel stresses: a finite element analysis,” J. Biomech., vol. 38, no. 8, pp. 1574–1581, Aug. 2005, doi: 10.1016/j.jbiomech.2004.07.022.
  32. S. Zhao, S. R. Froemming, S. Zhao, L. Gu, and S. R. Froemming, “Effects of Arterial Strain and Stress in the Prediction of Restenosis Risk: Computer Modeling of Stent Trials,” Biomed. Eng. Lett., vol. 2, no. 3, pp. 158–163, 2012, doi: 10.1007/s13534-012-0067-6.
  33. W. Wu, W.-Q. Wang, D.-Z. Yang, and M. Qi, “Stent expansion in curved vessel and their interactions: A finite element analysis,” J. Biomech., vol. 40, no. 11, pp. 2580–2585, Jan. 2007, doi: 10.1016/j.jbiomech.2006.11.009.
  34. I. Pericevic, C. Lally, D. Toner, and D. John, “The influence of plaque composition on underlying arterial wall stress during stent expansion : The case for lesion-specific stents,” vol. 31, pp. 428–433, 2009, doi: 10.1016/j.medengphy.2008.11.005.
  35. H. Zahedmanesh and C. Lally, “Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis,” Med Biol Eng Comput. vol, vol. 47, no. 4, pp. 385–393, 2009.
  36. A. Schiavone, L. G. Zhao, and A. A. Abdel-Wahab, “Dynamic simulation of stent deployment - effects of design, material and coating,” J. Phys., vol. 451, no. 1, 2013, doi: 10.1088/1742-6596/451/1/012032.
  37. A. Schiavone, L. G. Zhao, and A. A. Abdel-Wahab, “Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery—Finite element simulation,” Mater. Sci. Eng. C, vol. 42, pp. 479–488, Sep. 2014, doi: 10.1016/j.msec.2014.05.057.
  38. M. Imani, A. M. Goudarzi, D. D. Ganji, and A. L. Aghili, “The comprehensive finite element model for stenting: the influence of stent design on the outcome after coronary stent placement,” J. Theor. app;ied Mech., vol. 51, no. 3, pp. 639–648, 2013.
  39. A. Schiavone and L. GZhao, “A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment,” Mech. Adv. Mater. Mod. Process., 2015, doi: 10.1186/s40759-014-0002-x.
  40. J. Xu, J. Yang, N. Huang, C. Uhl, Y. Zhou, and Y. Liu, “Mechanical response of cardiovascular stents under vascular dynamic bending,” Biomed. Eng. Online, 2016, doi: 10.1186/s12938-016-0135-8.
  41. A. Schiavone, T.-Y. Qiu, and L.-G. Zhao, “Crimping and deployment of metallic and polymeric stents - finite element modelling,” Vessel Plus, 2017, doi: 10.20517/2574-1209.2016.03.
  42. Ž. Donik, B. Nečemer, S. Glodež, and J. Kramberger, “Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure,” Eng. Fail. Anal., vol. 137, no. March, p. 106267, Jul. 2022, doi: 10.1016/j.engfailanal.2022.106267.
  43. J. Bedoya, C. A. Meyer, L. H. Timmins, M. R. Moreno, and J. E. Moore, “Effects of stent design parameters on normal artery wall mechanics,” J Biomech Eng, vol. 128, no. 5, pp. 757–765, 2006.
  44. R. M. Hicks and P. A. Henne, “Wing Design by Numerical Optimization,” J. Aircr., vol. 15, no. 7, pp. 407–412, Jul. 1978, doi: 10.2514/3.58379.
  45. V. B. Kolachalama, N. W. Bressloff, P. B. Nair, and C. P. Shearman, “Predictive Haemodynamics in a One-Dimensional Human Carotid Artery Bifurcation. Part II: Application to Graft Design,” IEEE Trans. Biomed. Eng., vol. 55, no. 3, pp. 1176–1184, Mar. 2008, doi: 10.1109/TBME.2007.912398.
  46. M. Mooney, “A Theory of Large Elastic Deformation,” J Appl Phys, vol. 11, no. 9, pp. 582–592, 1940, doi: 10.1063/1.1712836.
  47. S. N. David Chua, B. J. Mac Donald, and M. S. J. Hashmi, “Finite element simulation of stent and balloon interaction,” in Journal of Materials Processing Technology, 2003, vol. 143–144, no. 1, pp. 591–597, doi: 10.1016/S0924-0136(03)00435-7.
  48. H. Zahedmanesh and D. John, “Simulation of a balloon expandable stent in a realistic coronary artery — Determination of the optimum modelling strategy,” vol. 43, pp. 2126–2132, 2010, doi: 10.1016/j.jbiomech.2010.03.050.
  49. A. Idziak-Jabłońska, K. Karczewska, and O. Kuberska, “Modeling of mechanical phenomena in the platinum-chromium coronary stents,” J. Appl. Math. Comput. Mech., vol. 16, no. 4, pp. 29–36, 2017, doi: 10.17512/jamcm.2017.4.03.
  50. D. S. S. Corp, “Dassault Systemes Abaqus 6.9.1 user manual.” 2009.
  51. D. Gastaldi, S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, and L. Petrini, “Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning,” Biomech. Model. Mechanobiol., vol. 9, no. 5, pp. 551–561, Oct. 2010, doi: 10.1007/s10237-010-0196-8.
  52. L. Gu, S. Zhao, A. K. Muttyam, and J. M. Hammel, “The Relation Between the Arterial Stress and Restenosis Rate After Coronary Stenting,” J. Med. Device., vol. 4, no. 3, p. 031005, Sep. 2010, doi: 10.1115/1.4002238.
  53. F. Migliavacca, L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini, “A predictive study of the mechanical behaviour of coronary stents by computer modelling,” Med. Eng. Phys., vol. 27, no. 1, pp. 13–18, Jan. 2005, doi: 10.1016/j.medengphy.2004.08.012.
  54. G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Circ. Physiol., vol. 289, no. 5, pp. H2048–H2058, Nov. 2005, doi: 10.1152/ajpheart.00934.2004.
  55. F. J. Gijsen, F. Migliavacca, S. Schievano, L. Socci, L. Petrini, and A. Thury, “Simulation of stent deployment in a realistic human coronary artery,” Biomed. Eng. Online, vol. 7, no. 1, p. 23, 2008, doi: 10.1186/1475-925X-7-23.