Advances in nanocarriers as drug delivery systems in Atherosclerosis therapy

Document Type : Review Paper


School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.


Cardiovascular diseases (CVDs) are known as killer diseases and to overcome these diseases, novel approaches are needed. Although many approaches were able to control this disease, they still had high risks for the patients. One of the best ways to control CVDs is to use targeted Nanosystems, with the help of Nanotechnology and Biology Sciences. Despite current therapeutic strategies to reduce risk, patients still experience the consequences of CVD. Improve visualization of early atherosclerotic lesions to decrease residual CVD risk is one of its goals. Nanomaterials used as Nanocarriers are mainly Polymeric based, Magnetic, Metalic, Silica based and Liposomes. In addition, some drugs can be loaded to these Nanocarries. In this review, we focused on nanocarriers to manage Atherosclerosis, which is the most prevalent type of CVD. We divided these nanocarriers into five main groups: Polymeric nanocarriers, Magnetic nanocarriers, Metalic nanocarriers, Liposomes and Silica-based nanocarriers.


  1. Kelley WJ, Safari H, Lopez-Cazares G, Eniola-Adefeso O. Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(6):909-26.
  2. Whayne TF, Jr. Atherosclerosis: current status of prevention and treatment. Int J Angiol. 2011;20(4):213-22.
  3. Kiaie N, Gorabi AM, Penson PE, Watts G, Johnston TP, Banach M, et al. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discovery Today. 2020;25(1):58-72.
  4. Nakhlband A, Eskandani M, Omidi Y, Saeedi N, Ghaffari S, Barar J, et al. Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective. Bioimpacts. 2018;8(1):59-75.
  5. Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci. 2020;20(1):21-30.
  6. Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, et al. Atherosclerosis Treatment with Stimuli‐Responsive Nanoagents: Recent Advances and Future Perspectives. Advanced Healthcare Materials. 2019;8(11):1900036.
  7. Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. Journal of Drug Targeting. 2015;23(7-8):619-26.
  8. Chan CKW, Zhang L, Cheng CK, Yang H, Huang Y, Tian XY, et al. Recent Advances in Managing Atherosclerosis via Nanomedicine. Small. 2017;14(4):1702793.
  9. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. The FASEB Journal. 2005;19(3):311-30.
  10. Chen M, Chen M, He J. Cancer cell membrane cloaking nanoparticles for targeted co-delivery of doxorubicin and PD-L1 siRNA. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):1635-41.
  11. Fang RH, Hu C-MJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano letters. 2014;14(4):2181-8.
  12. Narain A, Asawa S, Chhabria V, Patil-Sen Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine. 2017;12(21):2677-92.
  13. Jin K, Luo Z, Zhang B, Pang Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B. 2018;8(1):23-33.
  14. Song J, Shi F, Zhang Z, Zhu F, Xue J, Tan X, et al. Formulation and evaluation of celastrol-loaded liposomes. Molecules (Basel, Switzerland). 2011;16(9):7880-92.
  15. Allen S, Liu Y-G, Scott E. Engineering nanomaterials to address cell-mediated inflammation in atherosclerosis. Regen Eng Transl Med. 2016;2(1):37-50.
  16. Frey M, Bobbala S, Karabin N, Scott E. Influences of nanocarrier morphology on therapeutic immunomodulation. Nanomedicine (Lond). 2018;13(14):1795-811.
  17. Allen SD, Liu Y-G, Kim T, Bobbala S, Yi S, Zhang X, et al. Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater Sci. 2019;7(2):657-68.
  18. Chung EJ. Targeting and therapeutic peptides in nanomedicine for atherosclerosis. Exp Biol Med (Maywood). 2016;241(9):891-8.
  19. Kim Y, Lobatto ME, Kawahara T, Lee Chung B, Mieszawska AJ, Sanchez-Gaytan BL, et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci U S A. 2014;111(3):1078-83.
  20. Lobatto ME, Calcagno C, Millon A, Senders ML, Fay F, Robson PM, et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS nano. 2015;9(2):1837-47.
  21. Lobatto ME, Fuster V, Fayad ZA, Mulder WJM. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov. 2011;10(11):835-52.
  22. Peters EB. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Eng Part B Rev. 2018;24(1):1-24.
  23. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, et al. Shear-Activated Nanotherapeutics for Drug Targeting to Obstructed Blood Vessels. Science. 2012;337(6095):738-42.
  24. Bhowmick T, Berk E, Cui X, Muzykantov VR, Muro S. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1. J Control Release. 2012;157(3):485-92.
  25. Essa D, Kondiah PPD, Choonara YE, Pillay V. The Design of Poly(lactide-co-glycolide) Nanocarriers for Medical Applications. Front Bioeng Biotechnol. 2020;8:48-.
  26. Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CCW, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta biomaterialia. 2014;10(6):2643-52.
  27. Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. Journal of Controlled Release. 2014;190:465-76.
  28. Fathi M, Barar J. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. Bioimpacts. 2017;7(1):49-57.
  29. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery. 2003;2(3):214-21.
  30. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition. 2010;49(36):6288-308.
  31. Mishra S, Bedja D, Amuzie C, Foss CA, Pomper MG, Bhattacharya R, et al. Improved intervention of atherosclerosis and cardiac hypertrophy through biodegradable polymer-encapsulated delivery of glycosphingolipid inhibitor. Biomaterials. 2015;64:125-35.
  32. Ma S, Tian XY, Zhang Y, Mu C, Shen H, Bismuth J, et al. E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific reports. 2016;6:22910-.
  33. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release. 2012;161(2):505-22.
  34. Sanchez-Gaytan BL, Fay F, Lobatto ME, Tang J, Ouimet M, Kim Y, et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjugate chemistry. 2015;26(3):443-51.
  35. Wei X, Ying M, Dehaini D, Su Y, Kroll AV, Zhou J, et al. Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS nano. 2018;12(1):109-16.
  36. Song Y, Huang Z, Liu X, Pang Z, Chen J, Yang H, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice. Nanomedicine: Nanotechnology, Biology and Medicine. 2019;15(1):13-24.
  37. Vijayan V, Uthaman S, Park I-K. Cell Membrane-Camouflaged Nanoparticles: A Promising Biomimetic Strategy for Cancer Theragnostics. Polymers (Basel). 2018;10(9):983.
  38. Dziubla TD, Shuvaev VV, Hong NK, Hawkins BJ, Madesh M, Takano H, et al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials. 2008;29(2):215-27.
  39. Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, et al. Endothelial Targeting of High-Affinity Multivalent Polymer Nanocarriers Directed to Intercellular Adhesion Molecule 1. Journal of Pharmacology and Experimental Therapeutics. 2006;317(3):1161-9.
  40. Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther. 2008;16(8):1450-8.
  41. Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C. PLGA nanoparticle--peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjugate chemistry. 2008;19(1):145-52.
  42. Liu F, Huang H, Gong Y, Li J, Zhang X, Cao Y. Evaluation of in vitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chemico-Biological Interactions. 2017;263:46-54.
  43. Yi S, Karabin NB, Zhu J, Bobbala S, Lyu H, Li S, et al. An Injectable Hydrogel Platform for Sustained Delivery of Anti-inflammatory Nanocarriers and Induction of Regulatory T Cells in Atherosclerosis. Front Bioeng Biotechnol. 2020;8:542-.
  44. Mu D, Li J, Qi Y, Sun X, Liu Y, Shen S, et al. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for alleviating atherosclerosis. J Nanobiotechnology. 2020;18(1):179-.
  45. Kim M, Sahu A, Kim GB, Nam GH, Um W, Shin SJ, et al. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. Journal of Controlled Release. 2018;269:337-46.
  46. Craparo EF, Cabibbo M, Conigliaro A, Barreca MM, Musumeci T, Giammona G, et al. Rapamycin-Loaded Polymeric Nanoparticles as an Advanced Formulation for Macrophage Targeting in Atherosclerosis. Pharmaceutics. 2021;13(4):503.
  47. Esfandyari-Manesh M, Abdi M, Talasaz AH, Ebrahimi SM, Atyabi F, Dinarvand R. S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques. Daru. 2020;28(1):131-8.
  48. Wu Z, Chen C, Zhang B, Tang L, Shi W, Liao D, et al. EGFP-EGF1-conjugated poly(lactic-co-glycolic acid) nanoparticles, a new diagnostic tool and drug carrier for atherosclerosis. Int J Nanomedicine. 2019;14:2609-18.
  49. Wang Y, Zhang K, Li T, Maruf A, Qin X, Luo L, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 2021;11(1):164-80.
  50. Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine. 2006;1(2):117-28.
  51. Hong Z, Xu Y, Yin J-F, Jin J, Jiang Y, Du Q. Improving the Effectiveness of (−)-Epigallocatechin Gallate (EGCG) against Rabbit Atherosclerosis by EGCG-Loaded Nanoparticles Prepared from Chitosan and Polyaspartic Acid. Journal of Agricultural and Food Chemistry. 2014;62(52):12603-9.
  52. Gao C, Huang Q, Liu C, Kwong CHT, Yue L, Wan J-B, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nature communications. 2020;11(1):2622-.
  53. Yin W, Li W, Rubenstein DA, Meng Y. Biocompatible and target specific hydrophobically modified glycol chitosan nanoparticles. Biointerphases. 2016;11(4):04B301.
  54. Yu Y, Luo T, Liu S, Song G, Han J, Wang Y, et al. Chitosan Oligosaccharides Attenuate Atherosclerosis and Decrease Non-HDL in ApoE-/- Mice. Journal of Atherosclerosis and Thrombosis. 2015;22(9):926-41.
  55. Barenholz Y. Liposome application: problems and prospects. Current Opinion in Colloid & Interface Science. 2001;6(1):66-77.
  56. Benne N, Martins Cardoso R, Boyle AL, Kros A, Jiskoot W, Kuiper J, et al. Complement Receptor Targeted Liposomes Encapsulating the Liver X Receptor Agonist GW3965 Accumulate in and Stabilize Atherosclerotic Plaques. Advanced Healthcare Materials. 2020;9(10):2000043.
  57. Song Y, Zhang N, Li Q, Chen J, Wang Q, Yang H, et al. Biomimetic liposomes hybrid with platelet membranes for targeted therapy of atherosclerosis. Chemical Engineering Journal. 2021;408:127296.
  58. Li J, Ding F, Qian X, Sun J, Ge Z, Yang L, et al. Anti-inflammatory cytokine IL10 loaded cRGD liposomes for the targeted treatment of atherosclerosis. Journal of Microencapsulation. 2021;38(6):357-64.
  59. Huang X, Xu M-Q, Zhang W, Ma S, Guo W, Wang Y, et al. ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells. Nanoscale research letters. 2017;12(1):322-.
  60. Li X, Xiao H, Lin C, Sun W, Wu T, Wang J, et al. Synergistic effects of liposomes encapsulating atorvastatin calcium and curcumin and targeting dysfunctional endothelial cells in reducing atherosclerosis. Int J Nanomedicine. 2019;14:649-65.
  61. Benne N, van Duijn J, Lozano Vigario F, Leboux RJT, van Veelen P, Kuiper J, et al. Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. Journal of Controlled Release. 2018;291:135-46.
  62. Mukhopadhyay A, Joshi N, Chattopadhyay K, De G. A Facile Synthesis of PEG-Coated Magnetite (Fe3O4) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. ACS Applied Materials & Interfaces. 2011;4(1):142-9.
  63. Dave SR, Gao X. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2009;1(6):583-609.
  64. Park YI, Piao Y, Lee N, Yoo B, Kim BH, Choi SH, et al. Transformation of hydrophobic iron oxide nanoparticles to hydrophilic and biocompatible maghemite nanocrystals for use as highly efficient MRI contrast agent. Journal of Materials Chemistry. 2011;21(31):11472.
  65. You DG, Saravanakumar G, Son S, Han HS, Heo R, Kim K, et al. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydrate Polymers. 2014;101:1225-33.
  66. Zhang S, Xu W, Gao P, Chen W, Zhou Q. Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis. Artificial Cells, Nanomedicine, and Biotechnology. 2019;48(1):169-79.
  67. Corot C, Robert P, Idee J, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging☆. Advanced Drug Delivery Reviews. 2006;58(14):1471-504.
  68. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics. 2003;36(13):R167-R81.
  69. Dobson J. Magnetic nanoparticles for drug delivery. Drug Development Research. 2006;67(1):55-60.
  70. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation. 1996;13(3):245-55.
  71. Suresh S. Biomechanics and biophysics of cancer cells. Acta biomaterialia. 2007;3(4):413-38.
  72. Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S. Viscoelasticity of the human red blood cell. American Journal of Physiology-Cell Physiology. 2007;293(2):C597-C605.
  73. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer. 2002;2(8):563-72.
  74. Tartaj P, Morales MadP, Veintemillas-Verdaguer S, Gonz lez-Carre o T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics. 2003;36(13):R182-R97.
  75. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021.
  76. Hosu, Tertis, Cristea. Implication of Magnetic Nanoparticles in Cancer Detection, Screening and Treatment. Magnetochemistry. 2019;5(4):55.
  77. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. International Materials Reviews. 2004;49(3-4):125-70.
  78. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. Journal of the American Chemical Society. 2003;126(1):273-9.
  79. Lee J-H, Huh Y-M, Jun Y-w, Seo J-w, Jang J-t, Song H-T, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine. 2006;13(1):95-9.
  80. Xu C, Sun S. Monodisperse magnetic nanoparticles for biomedical applications. Polymer International. 2007;56(7):821-6.
  81. Rana S, Gallo A, Srivastava RS, Misra RDK. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: Functionalization, conjugation and drug release kinetics. Acta Biomaterialia. 2007;3(2):233-42.
  82. Huber DL. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005;1(5):482-501.
  83. Peng S, Wang C, Xie J, Sun S. Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society. 2006;128(33):10676-7.
  84. Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. Journal of Nanoparticle Research. 2005;8(3-4):489-96.
  85. Oumzil K, Ramin MA, Lorenzato C, Hémadou A, Laroche J, Jacobin-Valat MJ, et al. Solid Lipid Nanoparticles for Image-Guided Therapy of Atherosclerosis. Bioconjugate Chemistry. 2016;27(3):569-75.
  86. Marrella A, Iafisco M, Adamiano A, Rossi S, Aiello M, Barandalla-Sobrados M, et al. A combined low-frequency electromagnetic and fluidic stimulation for a controlled drug release from superparamagnetic calcium phosphate nanoparticles: potential application for cardiovascular diseases. J R Soc Interface. 2018;15(144):20180236.
  87. Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomedical Microdevices. 2007;9(5):719-27.
  88. Jacobin-Valat M-J, Deramchia K, Mornet S, Hagemeyer CE, Bonetto S, Robert R, et al. MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR in Biomedicine. 2010;24(4):413-24.
  89. Burtea C, Ballet S, Laurent S, Rousseaux O, Dencausse A, Gonzalez W, et al. Development of a Magnetic Resonance Imaging Protocol for the Characterization of Atherosclerotic Plaque by Using Vascular Cell Adhesion Molecule-1 and Apoptosis-Targeted Ultrasmall Superparamagnetic Iron Oxide Derivatives. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(6).
  90. Ravichandran R, Sridhar R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Gold Nanoparticle Loaded Hybrid Nanofibers for Cardiogenic Differentiation of Stem Cells for Infarcted Myocardium Regeneration. Macromolecular Bioscience. 2013;14(4):515-25.
  91. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J. 2013;4(1):20-.
  92. Jia C, Chen H, Wei M, Chen X, Zhang Y, Cao L, et al. Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. Int J Nanomedicine. 2017;12:4963-79.
  93. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10(3):831-47.
  94. Simpson CA, Agrawal AC, Balinski A, Harkness KM, Cliffel DE. Short-chain PEG mixed monolayer protected gold clusters increase clearance and red blood cell counts. ACS nano. 2011;5(5):3577-84.
  95. Galper MW, Saung MT, Fuster V, Roessl E, Thran A, Proksa R, et al. Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Invest Radiol. 2012;47(8):475-81.
  96. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. 2014;9(1):37-52.
  97. Au JT, Craig G, Longo V, Zanzonico P, Mason M, Fong Y, et al. Gold Nanoparticles Provide Bright Long-Lasting Vascular Contrast for CT Imaging. American Journal of Roentgenology. 2013;200(6):1347-51.
  98. Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano letters. 2008;8(11):3715-23.
  99. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710-2.
  100. Sha X, Dai Y, Song X, Liu S, Zhang S, Li J. The Opportunities and Challenges of Silica Nanomaterial for Atherosclerosis. Int J Nanomedicine. 2021;16:701-14.
  101. Jeong HJ, Yoo RJ, Kim JK, Kim MH, Park SH, Kim H, et al. Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling. Biomaterials. 2019;199:32-9.
  102. Yücel O, Şengelen A, Emik S, Önay-Uçar E, Arda N, Gürdağ G. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. Nanotechnology. 2020;31(35):355101.
  103. Ji R, Li X, Zhou C, Tian Q, Li C, Xia S, et al. Identifying macrophage enrichment in atherosclerotic plaques by targeting dual-modal US imaging/MRI based on biodegradable Fe-doped hollow silica nanospheres conjugated with anti-CD68 antibody. Nanoscale. 2018;10(43):20246-55.
  104. Xu W, Zhang S, Zhou Q, Chen W. VHPKQHR peptide modified magnetic mesoporous nanoparticles for MRI detection of atherosclerosis lesions. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):2440-8.
  105. Pham LM, Kim E-C, Ou W, Phung CD, Nguyen TT, Pham TT, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677.