Superplasticity of fine-grained austenitic stainless steels: A review

Document Type : Review Paper

Author

School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran

10.22059/jufgnsm.2023.01.04

Abstract

An appropriate fraction of a second phase for controlling the dynamic grain growth of the fine-grained microstructure during hot deformation can be easily achieved for the high and ultrahigh carbon steels as well as the duplex stainless steels (dual-phase ferritic-austenitic steels), which leads to good superplastic forming behaviors. However, the austenitic stainless steels are typically single-phase alloys at elevated temperatures, which might limit their tensile ductility, and hence, inducing superplastic ductility in these ferrous alloys needs special considerations. In the present review article, firstly, the methods for the grain refinement of austenitic stainless steels are summarized, which includes the formation of deformation-induced martensite during cold deformation and its reversion to austenite at elevated temperatures, severe plastic deformation (SPD) techniques, and thermomechanical processing routes that utilize the dynamic recrystallization (DRX). These methods are used to process fine-grained microstructures that are suitable for activating the grain boundary sliding (GBS) with strain rate sensitivity index (m) of ~0.5 at elevated temperatures. Afterward, the reported works on the superplasticity of austenitic stainless steels are critically discussed. It is revealed that the methods such as nitrogen addition, incorporating the carbonitride forming elements such as vanadium, increasing the carbon content of the material for the formation of carbides, and the incomplete reversion treatment for the retention of a small volume fraction of martensite can be used to increase the thermal stability of the ultrafine grained (UFG) microstructure against grain coarsening during superplastic deformation. Finally, some distinct suggestions for future works are introduced.

Keywords


  1. Malik, A., Chaudry, U.M., Hamad, K. and Jun, T.S., 2021. Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review. Metals, 11(11), p.1766.
  2. Mirzadeh, H., 2021. High strain rate superplasticity via friction stir processing (FSP): A review. Materials Science and Engineering: A, 819, p.141499.
  3. Charit, I. and Mishra, R.S., 2005. Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Materialia, 53(15), pp.4211-4223.
  4. Jeong, H.B., Choi, S.W., Kang, S.H. and Lee, Y.K., 2022. Ultralow-temperature superplasticity of high strength Fe–10Mn-3.5 Si steel. Materials Science and Engineering: A, p.143408.
  5. Wongsa-Ngam, J. and Langdon, T.G., 2022. Advances in superplasticity from a laboratory curiosity to the development of a superplastic forming industry. Metals, 12(11), p.1921.
  6. Langdon, T.G., 2009. Seventy-five years of superplasticity: historic developments and new opportunities. Journal of materials science, 44(22), pp.5998-6010.
  7. Kang, S.H., Choi, S.W., Im, Y.D. and Lee, Y.K., 2020. Grain boundary sliding during high-temperature tensile deformation in superplastic Fe-6.6 Mn-2.3 Al steel. Materials Science and Engineering: A, 780, p.139174.
  8. Xu, C., Furukawa, M., Horita, Z. and Langdon, T.G., 2004. Achieving a superplastic forming capability through severe plastic deformation. Nanomaterials by Severe Plastic Deformation, pp.699-710.
  9. Higashi, K., Mabuchi, M. and Langdon, T.G., 1996. High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. ISIJ international, 36(12), pp.1423-1438.
  10. Kawasaki, M. and Langdon, T.G., 2007. Principles of superplasticity in ultrafine-grained materials. Journal of materials science, 42(5), pp.1782-1796.
  11. Kassner, M.E., 2015. Fundamentals of creep in metals and alloys. Butterworth-Heinemann.
  12. Motallebi, R., Savaedi, Z. and Mirzadeh, H., 2022. Superplasticity of high-entropy alloys: a review. Archives of Civil and Mechanical Engineering, 22(1), pp.1-14.
  13. Nguyen, N.T.C., Asghari-Rad, P., Zargaran, A., Kim, E.S., Sathiyamoorthi, P. and Kim, H.S., 2022. Relation of phase fraction to superplastic behavior of multi-principal element alloy with a multi-phase structure. Scripta Materialia, 221, p.114949.
  14. Giuliano, G. ed., 2011. Superplastic forming of advanced metallic materials: Methods and applications. Elsevier.
  15. Padmanabhan, K.A., Prabu, S.B., Mulyukov, R.R., Nazarov, A., Imayev, R.M. and Chowdhury, S.G., 2018. Superplasticity: common basis for a near-ubiquitous phenomenon. Springer.
  16. Frommeyer, G. and Jiménez, J.A., 2005. Structural superplasticity at higher strain rates of hypereutectoid Fe-5.5 Al-1Sn-1Cr-1.3 C steel. Metallurgical and Materials Transactions A, 36(2), pp.295-300.
  17. Maehara, Y. and Langdon, T.G., 1990. Superplasticity of steels and ferrous alloys. Materials Science and Engineering: A, 128(1), pp.1-13.
  18. Furuhara, T. and Maki, T., 2005. Grain boundary engineering for superplasticity in steels. Journal of materials science, 40(4), pp.919-926.
  19. Zhang, H., Zhang, L., Cheng, X. and Bai, B., 2010. Superplastic characteristic of Mn–Si–Cr alloyed ultrahigh carbon steel realized through a novel process. Acta materialia, 58(18), pp.6173-6180.
  20. Özdemir, N. and Orhan, N., 2006. Investigation on the superplasticity behavior of ultrahigh carbon steel. Materials & design, 27(8), pp.706-709.
  21. Liang, J.W., Shen, Y.F., Misra, R.D.K. and Liaw, P.K., 2021. High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides. Journal of Materials Science & Technology, 83, pp.131-144.
  22. Walser, B. and Sherby, O.D., 1979. Mechanical behavior of superplastic ultrahigh carbon steels at elevated temperature. Metallurgical Transactions A, 10(10), pp.1461-1471.
  23. Wadsworth, J., Lin, J.H. and Sherby, O.D., 1981. Superplasticity in a tool steel. Metals Technology, 8(1), pp.190-193.
  24. Matsumura, N. and Tokizane, M., 1986. Austenite grain refinement and superplasticity in niobium microalloyed steel. Transactions of the Iron and Steel Institute of Japan, 26(4), pp.315-321.
  25. Wang, T., Hu, J., Du, L.X., Sun, G.S. and Misra, R.D.K., 2019. Strain rate and temperature dependence of low temperature superplastic deformation in a nanostructured microalloyed steel. Materials Letters, 243, pp.165-168.
  26. Ueji, R., Tsuji, N., Minamino, Y. and Koizumi, Y., 2002. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Materialia, 50(16), pp.4177-4189.
  27. Malekjani, S., Timokhina, I.B., Sabirov, I. and Hodgson, P.D., 2009. Deformation behaviour of ultrafine grained steel produced by cold rolling of martensite. Canadian metallurgical quarterly, 48(3), pp.229-235.
  28. Nakada, N., Arakawa, Y., Park, K.S., Tsuchiyama, T. and Takaki, S., 2012. Dual phase structure formed by partial reversion of cold-deformed martensite. Materials Science and Engineering: A, 553, pp.128-133.
  29. Azizi-Alizamini, H., Militzer, M. and Poole, W.J., 2011. Formation of ultrafine grained dual phase steels through rapid heating. ISIJ international, 51(6), pp.958-964.
  30. Alibeyki, M., Mirzadeh, H. and Najafi, M., 2018. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite. Vacuum, 155, pp.147-152.
  31. Li, S., Ren, X., Ji, X. and Gui, Y., 2014. Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel. Materials & Design, 55, pp.146-151.
  32. Miyamoto, H., Mimaki, T. and Hashimoto, S., 2001. Superplastic deformation of micro-specimens of duplex stainless steel. Materials Science and Engineering: A, 319, pp.779-783.
  33. Sagradi, M., D. Pulino-Sagradi, and R. E. Medrano. "The effect of the microstructure on the superplasticity of a duplex stainless steel." Acta Materialia 46, no. 11 (1998): 3857-3862.
  34. Han, Y.S. and Hong, S.H., 1999. Microstructural changes during superplastic deformation of Fe–24Cr–7Ni–3Mo–0.14 N duplex stainless steel. Materials Science and Engineering: A, 266(1-2), pp.276-284.
  35. Maehara, Y. and Ohmori, Y., 1987. Microstructural change during superplastic deformation of δ-ferrite/austenite duplex stainless steel. Metallurgical and Materials Transactions A, 18(4), pp.663-672.
  36. Humphreys, F.J. and Hatherly, M., 2012. Recrystallization and related annealing phenomena. Elsevier.
  37. Karjalainen, L.P., Taulavuori, T., Sellman, M. and Kyröläinen, A., 2008. Some strengthening methods for austenitic stainless steels. Steel research international, 79(6), pp.404-412.
  38. Olson, G.B. and Cohen, M., 1975. Kinetics of strain-induced martensitic nucleation. Metallurgical transactions A, 6(4), pp.791-795.
  39. De, A.K., Murdock, D.C., Mataya, M.C., Speer, J.G. and Matlock, D.K., 2004. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta materialia, 50(12), pp.1445-1449.
  40. Mohammadzehi, S. and Mirzadeh, H., 2022. Cold unidirectional/cross-rolling of austenitic stainless steels: a review. Archives of Civil and Mechanical Engineering, 22(3), p.129.
  41. Ahmedabadi, P.M. and Kain, V., 2020. Kinetics parameters for deformation-induced martensitic transformation in austenitic stainless steels. Philosophical Magazine Letters, 100(12), pp.555-560.
  42. Lo, K.H., Shek, C.H. and Lai, J.K.L., 2009. Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4-6), pp.39-104.
  43. Sohrabi, M.J., Naghizadeh, M. and Mirzadeh, H., 2020. Deformation-induced martensite in austenitic stainless steels: a review. Archives of Civil and Mechanical Engineering, 20(4), pp.1-24.
  44. 44. Pardal, J.M., Tavares, S.S.M., Tavares, M.T., Garcia, P.S.P., Velasco, J.A.C., Abreu, H.F.G. and Pardal, J.P., 2020. Influence of carbon content on the martensitic transformation of titanium stabilized austenitic stainless steels. The International Journal of Advanced Manufacturing Technology, 108(1), pp.345-356.
  45. Masumura, T., Fujino, K., Tsuchiyama, T., Takaki, S. and Kimura, K., 2021. Effect of Carbon and Nitrogen on Md30 in Metastable Austenitic Stainless Steel. isij international, 61(2), pp.546-555.
  46. Byun, T.S., Hashimoto, N. and Farrell, K., 2004. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Materialia, 52(13), pp.3889-3899.
  47. Angel, T., 1954. Formation of martensite in austenitic stainless steels effects of deformation, temperature, and composition. J. Iron and Steel Inst., 177, pp.165-174.
  48. Zergani, A., Mirzadeh, H. and Mahmudi, R., 2020. Unraveling the Effect of Deformation Temperature on the Mechanical Behavior and Transformation‐Induced Plasticity of the SUS304L Stainless Steel. Steel Research International, 91(9), p.2000114.
  49. Huang, M., Wang, L., Wang, C., Mogucheva, A. and Xu, W., 2022. Characterization of deformation-induced martensite with various AGSs upon Charpy impact loading and correlation with transformation mechanisms. Materials Characterization, 184, p.111704.
  50. Sohrabi, M.J., Mirzadeh, H., Sadeghpour, S. and Mahmudi, R., 2023. Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel. International Journal of Plasticity, 160, p.103502.
  51. Kisko, A., Misra, R.D.K., Talonen, J. and Karjalainen, L.P., 2013. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Materials Science and Engineering: A, 578, pp.408-416.
  52. Sun, G., Zhao, M., Du, L. and Wu, H., 2022. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel. Materials Characterization, 184, p.111674.
  53. Huang, M., Yuan, J., Wang, J., Wang, L., Mogucheva, A. and Xu, W., 2022. Role of martensitic transformation sequences on deformation-induced martensitic transformation at high strain rates: A quasi in-situ study. Materials Science and Engineering: A, 831, p.142319.
  54. Talonen, J., Hänninen, H., Nenonen, P. and Pape, G., 2005. Effect of strain rate on the strain-induced γ→ α′-martensite transformation and mechanical properties of austenitic stainless steels. Metallurgical and materials transactions A, 36(2), pp.421-432.
  55. Das, A., Tarafder, S. and Chakraborti, P.C., 2011. Estimation of deformation induced martensite in austenitic stainless steels. Materials Science and Engineering: A, 529, pp.9-20.
  56. Nohara, K., Ono, Y. and Ohashi, N., 1977. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-to-Hagané, 63(5), pp.772-782.
  57. Eskandari, M., Kermanpur, A. and Najafizadeh, A., 2009. Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metallurgical and Materials Transactions A, 40(9), pp.2241-2249.
  58. Rezaee, A., Kermanpur, A., Najafizadeh, A., Moallemi, M. and Baghbadorani, H.S., 2013. Investigation of cold rolling variables on the formation of strain-induced martensite in 201L stainless steel. Materials & Design, 46, pp.49-53.
  59. Sun, G., Du, L., Hu, J. and Zhang, B., 2020. Significant influence of rolling modes on martensitic transformation, microstructural evolution and texture development in a 304 stainless steel. Materials Characterization, 159, p.110073.
  60. Mohammadzehi, S., Mirzadeh, H., Sohrabi, M.J., Roostaei, M. and Mahmudi, R., 2023. Elucidating the effects of cold rolling route on the mechanical properties of AISI 316L austenitic stainless steel. Materials Science and Engineering: A, 865, p.144616.
  61. Naghizadeh, M. and Mirzadeh, H., 2018. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metallurgical and Materials Transactions A, 49, pp.2248-2256.
  62. Tomimura, K., Takaki, S., Tanimoto, S. and Tokunaga, Y., 1991. Optimal chemical composition in Fe-Cr-Ni alloys for ultra grain refining by reversion from deformation induced martensite. ISIJ international, 31(7), pp.721-727.
  63. Souza Filho, I.R.D., Zilnyk, K.D., Sandim, M.J.R., Bolmaro, R.E. and Sandim, H.R.Z., 2017. Strain partitioning and texture evolution during cold rolling of AISI 201 austenitic stainless steel. Materials Science and Engineering: A, 702, pp.161-172.
  64. Misra, R.D.K., Challa, V.S.A. and Injeti, V.S.Y., 2022. Phase reversion-induced nanostructured austenitic alloys: an overview. Materials Technology, 37(7), pp.437-449.
  65. Järvenpää, A., Jaskari, M., Kisko, A. and Karjalainen, P., 2020. Processing and properties of reversion-treated austenitic stainless steels. Metals, 10(2), p.281.
  66. Panov, D., Kudryavtsev, E., Chernichenko, R., Smirnov, A., Stepanov, N., Simonov, Y., Zherebtsov, S. and Salishchev, G., 2021. Mechanisms of the reverse martensite-to-austenite transformation in a metastable austenitic stainless steel. Metals, 11(4), p.599.
  67. Padilha, A.F., Plaut, R.L. and Rios, P.R., 2003. Annealing of cold-worked austenitic stainless steels. ISIJ international, 43(2), pp.135-143.
  68. Tomimura, K., Takaki, S. and Tokunaga, Y., 1991. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ international, 31(12), pp.1431-1437.
  69. Sun, G.S., Du, L.X., Hu, J. and Misra, R.D.K., 2018. Microstructural evolution and recrystallization behavior of cold rolled austenitic stainless steel with dual phase microstructure during isothermal annealing. Materials Science and Engineering: A, 709, pp.254-264.
  70. Kisko, A., Hamada, A.S., Talonen, J., Porter, D. and Karjalainen, L.P., 2016. Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels. Materials Science and Engineering: A, 657, pp.359-370.
  71. Xu, D.M., Li, G.Q., Wan, X.L., Misra, R.D.K., Zhang, X.G., Xu, G. and Wu, K.M., 2018. The effect of annealing on the microstructural evolution and mechanical properties in phase reversed 316LN austenitic stainless steel. Materials Science and Engineering: A, 720, pp.36-48.
  72. Tasan, C.C., Diehl, M., Yan, D., Bechtold, M., Roters, F., Schemmann, L., Zheng, C., Peranio, N., Ponge, D., Koyama, M. and Tsuzaki, K., 2015. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research, 45, pp.391-431.
  73. Nasiri, Z., Ghaemifar, S., Naghizadeh, M. and Mirzadeh, H., 2021. Thermal mechanisms of grain refinement in steels: a review. Metals and Materials International, 27(7), pp.2078-2094.
  74. Mazaheri, Y., Jahanara, A.H., Sheikhi, M. and Kalashami, A.G., 2019. High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing. Materials Science and Engineering: A, 761, p.138021.
  75. Najafi, M., Mirzadeh, H. and Alibeyki, M., 2019. Improved mechanical properties of structural steel via developing bimodal grain size distribution and intercritical heat treatment. Journal of Materials Engineering and Performance, 28(9), pp.5409-5414.
  76. Kheiri, S., Mirzadeh, H. and Naghizadeh, M., 2019. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Materials Science and Engineering: A, 759, pp.90-96.
  77. Ma, Y., Jin, J.E. and Lee, Y.K., 2005. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Materialia, 52(12), pp.1311-1315.
  78. Al-Fadhalah, K.J., Al-Attal, Y. and Rafeeq, M.A., 2022. Microstructure Refinement of 301 Stainless Steel via Thermomechanical Processing. Metals, 12(10), p.1690.
  79. Hamada, A., Khosravifard, A., Ghosh, S., Jaskari, M., Järvenpää, A. and Karjalainen, P., 2022. High-speed erichsen testing of grain-refined 301LN austenitic stainless steel processed by double-reversion annealing. Metallurgical and Materials Transactions A, 53(6), pp.2174-2194.
  80. Naghizadeh, M. and Mirzadeh, H., 2018. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing. Materials Research Express, 5(5), p.056529.
  81. Mandal, S., Bhaduri, A.K. and Subramanya Sarma, V., 2011. One-step and iterative thermo-mechanical treatments to enhance Σ3n boundaries in a Ti-modified austenitic stainless steel. Journal of Materials Science, 46(1), pp.275-284.
  82. Sun, G.S., Du, L.X., Hu, J., Xie, H., Wu, H.Y. and Misra, R.D.K., 2015. Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment. Materials characterization, 110, pp.228-235.
  83. He, Y.M., Wang, Y.H., Guo, K. and Wang, T.S., 2017. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Materials Science and Engineering: A, 708, pp.248-253.
  84. Nanda, T., Kumar, B.R. and Singh, V., 2016. A Thermal Cycling Route for Processing Nano-grains in AISI 316L Stainless Steel for Improved Tensile Deformation Behaviour. Defence Science Journal, 66(5).
  85. Ravi Kumar, B. and Sharma, S., 2014. Recrystallization behavior of a heavily deformed austenitic stainless steel during iterative type annealing. Metallurgical and Materials Transactions A, 45(13), pp.6027-6038.
  86. Li, J., Cao, Y., Gao, B., Li, Y. and Zhu, Y., 2018. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. Journal of Materials Science, 53(14), pp.10442-10456.
  87. Li, J., Gao, B., Huang, Z., Zhou, H., Mao, Q. and Li, Y., 2018. Design for strength-ductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing. Vacuum, 157, pp.128-135.
  88. Wang, S., Li, J., Cao, Y., Gao, B., Mao, Q. and Li, Y., 2018. Thermal stability and tensile property of 316L stainless steel with heterogeneous lamella structure. Vacuum, 152, pp.261-264.
  89. Li, J., Mao, Q., Chen, M., Qin, W., Lu, X., Liu, T., She, D., Kang, J., Wang, G., Zhu, X. and Li, Y., 2021. Enhanced pitting resistance through designing a high-strength 316L stainless steel with heterostructure. journal of materials research and technology, 10, pp.132-137.
  90. Edalati, K., Bachmaier, A., Beloshenko, V.A., Beygelzimer, Y., Blank, V.D., Botta, W.J., Bryła, K., Čížek, J., Divinski, S., Enikeev, N.A. Estrin, Y., Faraji, G., Figueiredo, R.B., Fuji, M., Furuta, T., Grosdidier, T., Gubicza, J., Hohenwarter, A., Horita, Z., Huot, J., Ikoma, Y., Janeček, M., Kawasaki, M., Král, P., Kuramoto, S., Langdon, T.G., Leiva, D.R., Levitas, V.I., Mazilkin, A., Mito, M., Miyamoto, H., Nishizaki, T., Pippan, R., Popov, V.V., Popova, E.N., Purcek, G., Renk, O., Révész, A., Sauvage, X., Sklenicka, V., Skrotzki, W., Straumal, B.B., Suwas, S., Toth, L.S., Tsuji, N., Valiev, R.Z., Wilde, G., Zehetbauer, M.J., and Zhu, X., 2022. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 10(4), pp.163-256.
  91. Cao, Y., Ni, S., Liao, X., Song, M. and Zhu, Y., 2018. Structural evolutions of metallic materials processed by severe plastic deformation. Materials Science and Engineering: R: Reports, 133, pp.1-59.
  92. Heidarzadeh, A., Mironov, S., Kaibyshev, R., Çam, G., Simar, A., Gerlich, A., Khodabakhshi, F., Mostafaei, A., Field, D.P., Robson, J.D. Deschamps, A., and Withers, P.J., 2021. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Progress in Materials Science, 117, p.100752.
  93. Scheriau, S., Zhang, Z., Kleber, S. and Pippan, R., 2011. Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion. Materials Science and Engineering: A, 528(6), pp.2776-2786.
  94. Gubicza, J., El-Tahawy, M., Huang, Y., Choi, H., Choe, H., Lábár, J.L. and Langdon, T.G., 2016. Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Materials Science and Engineering: A, 657, pp.215-223.
  95. Qu, S., Huang, C.X., Gao, Y.L., Yang, G., Wu, S.D., Zang, Q.S. and Zhang, Z.F., 2008. Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing. Materials Science and Engineering: A, 475(1-2), pp.207-216.
  96. Sajadifar, S.V., Hosseinzadeh, A., Richter, J., Krochmal, M., Wegener, T., Bolender, A., Heidarzadeh, A., Niendorf, T. and Yapici, G.G., 2022. On the Friction Stir Processing of Additive‐Manufactured 316L Stainless Steel. Advanced Engineering Materials, 24(10), p.2200384.
  97. Zhang, H.W., Hei, Z.K., Liu, G., Lu, J. and Lu, K., 2003. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta materialia, 51(7), pp.1871-1881.
  98. Ghosh, S., Bibhanshu, N., Suwas, S. and Chatterjee, K., 2021. Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility. Materials Science and Engineering: A, 820, p.141540.
  99. Nakao, Y. and Miura, H., 2011. Nano-grain evolution in austenitic stainless steel during multi-directional forging. Materials Science and Engineering: A, 528(3), pp.1310-1317.
  100. Singh, R., Agrahari, S., Yadav, S.D. and Kumar, A., 2021. Microstructural evolution and mechanical properties of 316 austenitic stainless steel by CGP. Materials Science and Engineering: A, 812, p.141105.
  101. Salvatori, I., Inoue, T. and Nagai, K., 2002. Ultrafine grain structure through dynamic recrystallization for Type 304 stainless steel. ISIJ international, 42(7), pp.744-750.
  102. Kim, S.I. and Yoo, Y.C., 2001. Dynamic recrystallization behavior of AISI 304 stainless steel. Materials Science and Engineering: A, 311(1-2), pp.108-113.
  103. Souza, R.C., Silva, E.S., Jorge Jr, A.M., Cabrera, J.M. and Balancin, O., 2013. Dynamic recovery and dynamic recrystallization competition on a Nb-and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature. Materials Science and Engineering: A, 582, pp.96-107.
  104. Tamura, I., Sekine, H. and Tanaka, T., 2013. Thermomechanical processing of high-strength low-alloy steels. Butterworth-Heinemann.
  105. Zhang, H.K., Xiao, H., Fang, X.W., Zhang, Q., Logé, R.E. and Huang, K., 2020. A critical assessment of experimental investigation of dynamic recrystallization of metallic materials. Materials & Design, 193, p.108873.
  106. Savaedi, Z., Motallebi, R. and Mirzadeh, H., 2022. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. Journal of Alloys and Compounds, 903, p.163964.
  107. Mandal, S., Bhaduri, A.K. and Subramanya Sarma, V., 2012. Influence of state of stress on dynamic recrystallization in a titanium-modified austenitic stainless steel. Metallurgical and Materials Transactions A, 43(2), pp.410-414.
  108. Belyakov, A., Tikhonova, M., Dolzhenko, P., Sakai, T. and Kaibyshev, R., 2019. On kinetics of grain refinement and strengthening by dynamic recrystallization. Advanced Engineering Materials, 21(1), p.1800104.
  109. Motallebi, R., Savaedi, Z. and Mirzadeh, H., 2022. Additive manufacturing–A review of hot deformation behavior and constitutive modeling of flow stress. Current Opinion in Solid State and Materials Science, 26(3), p.100992.
  110. Dehghan-Manshadi, A., Barnett, M.R. and Hodgson, P.D., 2008. Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization. Metallurgical and Materials Transactions A, 39(6), pp.1359-1370.
  111. Mineura, K. and Tanaka, K., 1989. Superplasticity of 20Cr− 10Ni− 0.7 N (wt%) ultra-high nitrogen austenitic stainless steel. Journal of materials science, 24(8), pp.2967-2970.
  112. Astafurova, E., Moskvina, V., Panchenko, M., Maier, G., Melnikov, E., Reunova, K., Galchenko, N. and Astafurov, S., 2019. On the Superplastic Deformation in Vanadium-Alloyed High-Nitrogen Steel. Metals, 10(1), p.27.
  113. Tsuchiyama, T., Nakamura, Y., Hidaka, H. and Takaki, S., 2004. Effect of initial microstructure on superplasticity in ultrafine grained 18Cr-9Ni stainless steel. Materials transactions, 45(7), pp.2259-2263.
  114. Sohrabi, M.J., Mirzadeh, H. and Dehghanian, C., 2020. Thermodynamics basis of saturation of martensite content during reversion annealing of cold rolled metastable austenitic steel. Vacuum, 174, p.109220.
  115. Katoh, M. and Torisaka, Y., 1998. Thermo-mechanical treatment for improvement of superplasticity of SUS304. Tetsu-to-Hagané, 84(2), pp.127-130.
  116. Katoh, M. and Torisaka, Y., 2003. Thermo-mechanical Treatment with Multi-direction Upsetting for Improvement of Superplasticity in SUS304. Tetsu-to-Hagané, 89(10), pp.1038-1043.
  117. Sun, G.S., Du, L.X., Hu, J., Xie, H. and Misra, R.D.K., 2017. Low temperature superplastic-like deformation and fracture behavior of nano/ultrafine-grained metastable austenitic stainless steel. Materials & Design, 117, pp.223-231.
  118. Xu, D.M., Li, G.Q., Wan, X.L., Misra, R.D.K., Yu, J.X. and Xu, G., 2020. On the deformation mechanism of austenitic stainless steel at elevated temperatures: A critical analysis of fine-grained versus coarse-grained structure. Materials Science and Engineering: A, 773, p.138722.
  119. Lu, J., Zhao, M., Wu, H. and Du, L., 2022. Effect of Warm Deformation on Mechanical Properties and Deformation Mechanism of Nano/Ultrafine‐Grained 304 Stainless Steel. steel research international, 93(10), p.2200198.
  120. Yagodzinskyy, Y., Pimenoff, J., Tarasenko, O., Romu, J., Nenonen, P. and Hänninen, H., 2004. Grain refinement processes for superplastic forming of AISI 304 and 304L austenitic stainless steels. Materials science and technology, 20(7), pp.925-929.
  121. Shirdel, M., Mirzadeh, H. and Habibi Parsa, M., 2014. Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metallurgical and Materials Transactions A, 45(11), pp.5185-5193.
  122. Stornelli, G., Gaggiotti, M., Mancini, S., Napoli, G., Rocchi, C., Tirasso, C. and Di Schino, A., 2022. Recrystallization and grain growth of AISI 904L super-austenitic stainless steel: A multivariate regression approach. Metals, 12(2), p.200.
  123. Kotan, H. and Darling, K.A., 2018. A study of microstructural evolution of Fe-18Cr-8Ni, Fe-17Cr-12Ni, and Fe-20Cr-25Ni stainless steels after mechanical alloying and annealing. Materials Characterization, 138, pp.186-194.
  124. Shirdel, M., Mirzadeh, H. and Habibi Parsa, M., 2014. Abnormal grain growth in AISI 304L stainless steel. Materials Characterization, 97, pp.11-17.
  125. Paggi, A., Angella, G. and Donnini, R., 2015. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization. Materials Characterization, 107, pp.174-181.
  126. Di Schino, A., Kenny, J.M. and Abbruzzese, G., 2002. Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel. Journal of materials Science, 37(24), pp.5291-5298.
  127. Kisko, A., Talonen, J., Porter, D.A. and Karjalainen, L.P., 2015. Effect of Nb microalloying on reversion and grain growth in a high-Mn 204Cu austenitic stainless steel. ISIJ International, 55(10), pp.2217-2224.
  128. Naghizadeh, M. and Mirzadeh, H., 2016. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metallurgical and Materials Transactions A, 47(12), pp.5698-5703.
  129. Gottstein, G. and Shvindlerman, L.S., 2009. Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC press.
  130. Yamamoto, S., Sakiyama, T. and Ouchi, C., 1987. Effect of alloying elements on recrystallization kinetics after hot deformation in austenitic stainless steels. Transactions of the Iron and Steel Institute of Japan, 27(6), pp.446-452.
  131. Savaedi, Z., Motallebi, R., Mirzadeh, H., Mehdinavaz Aghdam, R. and Mahmudi, R., 2023. Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review. Current Opinion in Solid State and Materials Science, 27(2), p.101058.
  132. Shahmir, H., Naghdi, F., Pereira, P.H.R., Huang, Y. and Langdon, T.G., 2018. Factors influencing superplasticity in the Ti-6Al-4V alloy processed by high-pressure torsion. Materials Science and Engineering: A, 718, pp.198-206.
  133. Bhatta, L., Pesin, A., Zhilyaev, A.P., Tandon, P., Kong, C. and Yu, H., 2020. Recent development of superplasticity in aluminum alloys: A review. Metals, 10(1), p.77.
  134. Alizadeh, R., Mahmudi, R., Pereira, P.H.R., Huang, Y. and Langdon, T.G., 2017. Microstructural evolution and superplasticity in an Mg–Gd–Y–Zr alloy after processing by different SPD techniques. Materials Science and Engineering: A, 682, pp.577-585.
  135. Asghari-Rad, P., Nili-Ahmadabadi, M., Shirazi, H., Hossein Nedjad, S. and Koldorf, S., 2017. A significant improvement in the mechanical properties of AISI 304 stainless steel by a combined RCSR and annealing process. Advanced Engineering Materials, 19(3), p.1600663.
  136. Guler, Z. and Yapici, G.G., 2021. Application of Novel Constrained Groove Pressing Routes on Austenitic Stainless Steel. Transactions of the Indian Institute of Metals, 74(11), pp.2599-2608.
  137. Singh, R., Singh, D., Sachan, D., Yadav, S.D. and Kumar, A., 2021. Microstructural Evolution and Mechanical Properties of Constrained Groove-Pressed 304 Austenitic Stainless Steel. Journal of Materials Engineering and Performance, 30(1), pp.290-301.
  138. Taleff, E.M., Nagao, M., Higashi, K. and Sherby, O.D., 1996. High-strain-rate superplasticity in ultrahigh-carbon steel containing 10 wt.% Al (UHCS-10Al). Scripta Materialia, 34(12), pp.1919-1923.
  139. Xiong, R., Kwon, H., Karthik, G.M., Gu, G.H., Asghari-Rad, P., Son, S., Kim, E.S. and Kim, H.S., 2021. Novel multi-metal stainless steel (316L)/high-modulus steel (Fe-TiB2) composite with enhanced specific modulus and strength using high-pressure torsion. Materials Letters, 303, p.130510.
  140. Savaedi, Z., Mirzadeh, H., Mehdinavaz Aghdam, R. and Mahmudi, R., 2022. Thermal stability, grain growth kinetics, mechanical properties, and bio-corrosion resistance of pure Mg, ZK30, and ZEK300 alloys: A comparative study. Materials Today Communications, 33, p.104825.
  141. Rezaei, A., Mahmudi, R., Cayron, C. and Loge, R., 2021. Microstructural evolution and superplastic behavior of a fine-grained Mg–Gd–Y–Ag alloy processed by simple shear extrusion. Materials Science and Engineering: A, 806, p.140803.
  142. 142. Sayari, F., Mahmudi, R. and Roumina, R., 2020. Inducing superplasticity in extruded pure Mg by Zr addition. Materials Science and Engineering: A, 769, p.138502.
  143. Hoseini-Athar, M.M., Mahmudi, R., Babu, R.P. and Hedström, P., 2019. Microstructural evolution and superplastic behavior of a fine-grained Mg–Gd alloy processed by constrained groove pressing. Materials Science and Engineering: A, 754, pp.390-399.
  144. Fakhar, N., Sabbaghian, M., Nagy, P., Fekete, K. and Gubicza, J., 2021. Superior low-temperature superplasticity in fine-grained ZK60 Mg alloy sheet produced by a combination of repeated upsetting process and sheet extrusion. Materials Science and Engineering: A, 819, p.141444.
  145. Mehrabi, A., Mahmudi, R. and Miura, H., 2019. Superplasticity in a multi-directionally forged Mg–Li–Zn alloy. Materials Science and Engineering: A, 765, p.138274.
  146. Lancaster, R.J., Jeffs, S.P., Haigh, B.J. and Barnard, N.C., 2022. Derivation of material properties using small punch and shear punch test methods. Materials & Design, 215, p.110473.
  147. Guduru, R.K., Darling, K.A., Kishore, R., Scattergood, R.O., Koch, C.C. and Murty, K.L., 2005. Evaluation of mechanical properties using shear–punch testing. Materials Science and Engineering: A, 395(1-2), pp.307-314.
  148. Zergani, A., Mirzadeh, H. and Mahmudi, R., 2020. Evolutions of mechanical properties of AISI 304L stainless steel under shear loading. Materials Science and Engineering: A, 791, p.139667.
  149. Zergani, A., Mirzadeh, H. and Mahmudi, R., 2021. Finite element analysis of plastic deformation in shear punch test. Materials Letters, 284, p.128953.
  150. Mahmudi, R. and Sadeghi, M., 2013. Correlation between shear punch and tensile strength for low-carbon steel and stainless steel sheets. Journal of Materials Engineering and Performance, 22(2), pp.433-438.
  151. Eskandari, M., Zarei-Hanzaki, A. and Abedi, H.R., 2013. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels. Materials & Design, 45, pp.674-681.
  152. Wang, X., Jiang, L., Zhang, D., Rupert, T.J., Beyerlein, I.J., Mahajan, S., Lavernia, E.J. and Schoenung, J.M., 2020. Revealing the deformation mechanisms for room-temperature compressive superplasticity in nanocrystalline magnesium. Materialia, 11, p.100731.
  153. Azizi, A. and Abedi, H.R., 2022. Room temperature compressive superplasticity of low density steel. Scripta Materialia, 216, p.114757.
  154. Dutta, A., Tung, S.Y., Gupta, S.K., Tsai, M.H. and Nene, S.S., 2023. Room-Temperature Superformability in Novel As-Cast High-Entropy Alloy During Compressive Loading. Advanced Engineering Materials, p.2201347. DOI: 10.1002/adem.202201347.