Abolhasani, A., Aliofkhazraei, M., Farhadi, S., Sabour Rouhaghdam, A., Asgari, M. (2015). Growth, corrosion, and wear study of nanocomposite PEO coating in electrolyte containing nickel sulfate. Journal of Ultrafine Grained and Nanostructured Materials, 48(2), 133-144. doi: 10.7508/jufgnsm.2015.02.008
Ali Abolhasani; Mahmood Aliofkhazraei; Seyed Saeed Farhadi; Alireza Sabour Rouhaghdam; Masoud Asgari. "Growth, corrosion, and wear study of nanocomposite PEO coating in electrolyte containing nickel sulfate". Journal of Ultrafine Grained and Nanostructured Materials, 48, 2, 2015, 133-144. doi: 10.7508/jufgnsm.2015.02.008
Abolhasani, A., Aliofkhazraei, M., Farhadi, S., Sabour Rouhaghdam, A., Asgari, M. (2015). 'Growth, corrosion, and wear study of nanocomposite PEO coating in electrolyte containing nickel sulfate', Journal of Ultrafine Grained and Nanostructured Materials, 48(2), pp. 133-144. doi: 10.7508/jufgnsm.2015.02.008
Abolhasani, A., Aliofkhazraei, M., Farhadi, S., Sabour Rouhaghdam, A., Asgari, M. Growth, corrosion, and wear study of nanocomposite PEO coating in electrolyte containing nickel sulfate. Journal of Ultrafine Grained and Nanostructured Materials, 2015; 48(2): 133-144. doi: 10.7508/jufgnsm.2015.02.008
Growth, corrosion, and wear study of nanocomposite PEO coating in electrolyte containing nickel sulfate
1Department of Materials Science, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran, P.O.Box: 14115-143.
2Department of Materials Science, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran, P.O.Box: 14115-143
Abstract
Plasma electrolytic oxidation (PEO) was performed on a 1010 Aluminum alloy. To achieve the nanocomposite structure, Si3N4 nanoparticles were added into the electrolyte. In an alkaline aqueous suspension (silicate-based), the effect of adding NiSO4 on the applied voltage, microstructure, composition, wear, and corrosion resistance of PEO coatings was investigated using Scanning Electron Microscopy (SEM), elemental analysis with Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), cyclic polarization test, and pin-on-disk wear test. The results showed that adding nickel sulfate (NiSO4) and infiltration of its constituents into coatings lead to a more favored corrosion behavior. Moreover, in the case of best sample, anodic current at the highest applied potential condition during the cyclic polarization test indicated a drop within two decades. Moreover, coefficient of friction decreased almost by half.
[1]. T. Wei, F. Yan, J. Tian, Journal of Alloys and Compounds, Vol. 389 (2005) pp. 169-176. [2]. M. Treviño, R.D. Mercado-Solis, R. Colás, A. Pérez, J. Talamantes, A. Velasco, Wear, Vol. 301 (2013) pp. 434-441. [3]. J. Tian, Z. Luo, S. Qi, X. Sun, Surface and Coatings Technology, Vol. 154 (2002) pp. 1-7. [4]. Y.-J. Oh, J.-I. Mun, J.-H. Kim, Surface and Coatings Technology, Vol. 204 (2009) pp. 141-148. [5]. G. Thompson, H. Habazaki, K. Shimizu, M. Sakairi, P. Skeldon, X. Zhou, G. Wood, Aircraft Engineering and Aerospace Technology, Vol. 71 (1999) pp. 228-238. [6]. X. Sun, Z. Jiang, S. Xin, Z. Yao, Thin Solid Films, Vol. 471 (2005) pp. 194-199. [7]. M. Tang, W. Li, H. Liu, L. Zhu, Current Applied Physics, Vol. 12 (2012) pp. 1259-1265. [8]. G. Sundararajan, L. Rama Krishna, Surface and Coatings Technology, Vol. 167 (2003) pp. 269-277. [9]. S. Stojadinovic, R. Vasilic, I. Belca, M. Petkovic, B. Kasalica, Z. Nedic, L. Zekovic, Corrosion Science, Vol. 52 (2010) pp. 3258-3265. [10]. D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, C. Subrahmanyam, L. Rama Krishna, K. Prasad Rao, Surface and Coatings Technology, Vol. 222 (2013) pp. 31-37. [11]. D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, Ceramics International, Vol. 38 (2012) pp. 4607-4615. [12]. L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, A. Matthews, Electrochimica Acta, Vol. 49 (2004) pp. 2085-2095. [13]. D.-J. Shen, Y.-L. Wang, P. Nash, G.-Z. Xing, Journal of Materials Processing Technology, Vol. 205 (2008) pp. 477-481. [14]. D. Shen, G. Li, C. Guo, J. Zou, J. Cai, D. He, H. Ma, F. Liu, Applied Surface Science, Vol. 287 (2013) pp. 451-456. [15]. M. Petković, S. Stojadinović, R. Vasilić, I. Belča, Z. Nedić, B. Kasalica, U.B. Mioč, Applied Surface Science, Vol. 257 (2011) pp. 9555-9561. [16]. J. Li, Z. Shao, X. Zhang, Y. Tian, Surface and Coatings Technology, Vol. 200 (2006) pp. 3010-3015. [17]. M. Aliofkhazraei, A.S. Rouhaghdam, Nanocomposite coatings, Nova Science Publishers, 2011. [18]. M. Aliofkhazraei, A. Sabour Rouhaghdam, Surface and Coatings Technology, Vol. 205 (2010) pp. 51-56. [19]. M. Aliofkhazraei, A. Sabour Rouhaghdam, Fabrication of Nanostructures by Plasma Electrolysis, John Wiley Publisher, 2010. [20]. M. Aliofkhazraei, P. Taheri, A. Sabour Rouhaghdam, C. Dehghanian, Materials Science, Vol. 43 (2007) pp. 791-799. [21]. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Surface and Coatings Technology, Vol. 122 (1999) pp. 73-93. [22]. S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, L.B. Boinovich, Surface and Coatings Technology, Vol. 232 (2013) pp. 240-246. [23]. V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, S. Rohani, Surface and Coatings Technology, Vol. 226 (2013) pp. 100-107. [24]. M. Aliofkhazraei, A. Sabour Rouhaghdam, T. Shahrabi, Surface and Coatings Technology, Vol. 205, Supplement 1 (2010) pp. 41-46. [25]. M. Aliofkhazraei, A.S. Rouhaghdam, E. Ghobadi, Journal of Nanoscience and Nanotechnology, Vol. 11 (2011) pp. 9057-9060. [26]. Y.Q. Zhou, C. Gao, X.C. Shi, J.Y. Xu, X. Jiang, Advanced Materials Research, Vols. 1030-1032, 2014, pp. 165-169. [27]. K. Wang, B.H. Koo, C.G. Lee, Y.J. Kim, S. Lee, E. Byon, Chinese Journal of Aeronautics, Vol. 22 (2009) pp. 564-568. [28]. H.R. Masiha, H.R. Bagheri, M. Gheytani, M. Aliofkhazraei, A. Sabour Rouhaghdam, T. Shahrabi, Applied Surface Science, Vol. 317 (2014) pp. 962-969. [29]. L. Wang, L. Chen, Z. Yan, H. Wang, J. Peng, Journal of Alloys and Compounds, Vol. 480 (2009) pp. 469-474. [30]. D. Wu, X. Liu, K. Lu, Y. Zhang, H. Wang, Applied Surface Science, Vol. 255 (2009) pp. 7115-7120. [31]. B. Yoo, K.R. Shin, D.Y. Hwang, D.H. Lee, D.H. Shin, Applied Surface Science, Vol. 256 (2010) pp. 6667-6672. [32]. S. Feliu, C. Maffiotte, A. Samaniego, J.C. Galván, V. Barranco, Applied Surface Science, Vol. 257 (2011) pp. 8558-8568. [33]. V. Shinde, A.B. Gaikwad, P.P. Patil, Applied Surface Science, Vol. 253 (2006) pp. 1037-1045. [34]. L. Wang, L. Chen, H.L. Wang, Z.C. Yan, J.Z. Peng, Corrosion and Protection, Vol. 30 (2009) pp. 388-391. [35]. X. Nie, X. Li, D. Northwood, Materials Science Forum, Vols. 546-549, 2007, pp. 1093-1100. [36]. U. Trdan, J. Grum, Corrosion Science, Vol. 59 (2012) pp. 324-333. [37]. A.S. Hamdy, F. Alfosail, Z. Gasem, Electrochimica Acta, Vol. 89 (2013) pp. 749-755. [38]. M. Aliofkhazraei, A.S. Rouhaghdam, Surface and Coatings Technology, Vol. 205, Supplement 2 (2011) pp. 57-62. [39]. Y. Cheng, J. Cao, Z. Peng, Q. Wang, E. Matykina, P. Skeldon, G.E. Thompson, Electrochimica Acta, Vol. 116 (2014) pp. 453-466.