Review on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures

Document Type: Research Paper

Authors

1 Shahid Rajaee Teacher Training University, Tehran, Iran

2 School of Materials & Metallurgical Engineering, University of Tehran, Tehran, Iran

Abstract

A review on the microstructural evolution in magnesium alloys during severe plastic deformation was
presented. The challenges deserved to achieve ultrafine/ nanostructured magnesium were discussed.
The characteristics of the processed materials are influenced by three main factors, including i)
difficult processing at low temperatures, ii) high temperature processing and the occurrence of
dynamic recrystallization and grain growth processes, and iii) a combined effect of grain refinement
and crystallographic texture changes. Reviewing the published results indicate that there are two
potential difficulties with severe deformation of magnesium alloys. First, it is very hard to achieve
homogeneous ultrafined microstructure with initial coarse grains. The second is the dependency of
microstructure development on the initial grain size and on the imposed strain level. It was clarified
that different grain refining mechanisms may be contributed along the course of multi-pass severe
deformation. It was clarified that discontinuous recrystallization takes places during the first stages of
deformation, whereas continuous refinement of the recrystallized grain may be realized at consecutive
passes. Shear band formation as well as twinning were demonstrated to play a significant role in grain
refinement of magnesium alloy. Also, the higher the processing temperature employed the more
homogeneous microstructure may be achieved with higher share of low angle grain boundaries.

Keywords


[1]. Agnew, S., Plastic anisotropy of magnesium alloy AZ31B sheet, in: Magnesium Technology, TMS 2002, pp. 169-174.
[2]. Del Valle, J., Ruano, O., Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy, Materials Science and Engineering: A, Vol. 487 (2008) pp. 473-480.
[3]. Kim, H. K., The grain size dependence of flow stress in an ECAPed AZ31 Mg alloy with a constant texture, Materials Science and Engineering: A, Vol. 515 (2009) pp. 66-70.
[4]. Zhu, Y. T., Lowe, T. C., Observations and issues on mechanisms of grain refinement during ECAP process, Materials Science and Engineering: A, Vol. 291 (2000) pp. 46-53.
[5]. Figueiredo, R., Cetlin, P., Langdon, T., The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Materialia, Vol. 55 (2007) pp. 4769-4779.
[6]. Figueiredo, R. B., Langdon, T. G., Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, Journal of materials science, Vol. 45 (2010) pp. 4827-4836.
[7]. Lin, H., Huang, J., Langdon, T., Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP, Materials Science and Engineering: A, Vol. 402 (2005) pp. 250-257.
[8]. Biswas, S., Suwas, S., Evolution of sub-micron grain size and weak texture in magnesium alloy Mg–3Al–0.4 Mn by a modified multi-axial forging process, Scripta Materialia, Vol. 66 (2012) pp. 89-92.
[9]. Del Valle, J., Pérez-Prado, M., Ruano, O., Accumulative roll bonding of a Mg-based AZ61 alloy, Materials Science and Engineering: A, Vol. 410 (2005) pp. 353-357.
[10]. Xu, C., Xia, K., Langdon, T. G., Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure, Materials Science and Engineering: A, Vol. 527 (2009) pp. 205-211.
[11]. Mabuchi, M., Iwasaki, H., Yanase, K., Higashi, K., Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE, Scripta materialia, Vol. 36 (1997) pp. 681-686.
[12]. Matsubara, K., Miyahara, Y., Horita, Z., Langdon, T., Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP, Acta materialia, Vol. 51 (2003) pp. 3073-3084.
[13]. Lapovok, R., Thomson, P., Cottam, R., Estrin, Y., The effect of grain refinement by warm equal channel angular extrusion on room temperature twinning in magnesium alloy ZK60, Journal of Materials Science, Vol. 40 (2005) pp. 1699-1708.
[14]. Furui, M., Kitamura, H., Anada, H., Langdon, T. G., Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP, Acta Materialia, Vol. 55 (2007) pp. 1083-1091.
[15]. Figueiredo, R. B., Langdon, T. G., Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing, Journal of materials science, Vol. 44 (2009) pp. 4758-4762.
[16]. Lapovok, R., Estrin, Y., Popov, M. V., Langdon, T. G., Enhanced Superplasticity in a Magnesium Alloy Processed by Equal‐Channel Angular Pressing with a Back‐Pressure, Advanced Engineering Materials, Vol. 10 (2008) pp. 429-433.
[17]. Ding, S., Chang, C., Kao, P., Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion, Metallurgical and Materials Transactions A, Vol. 40 (2009) pp. 415-425.
[18]. Ding, R., Chung, C., Chiu, Y., Lyon, P., Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy, Materials Science and Engineering: A, Vol. 527 (2010) pp. 3777-3784.

[19]. Kim, W., Yoo, S., Chen, Z., Jeong, H., Grain size and texture control of Mg-3Al-1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes, Scripta materialia, Vol. 60 (2009) pp. 897-900.
[20]. Zhilyaev, A. P., Langdon, T. G., Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, Vol. 53 (2008) pp. 893-979.
[21]. Pérez-Prado, M., Ruano, O., Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding, Scripta Materialia, Vol. 51 (2004) pp. 1093-1097.
[22]. Xing, J., Soda, H., Yang, X., Miura, H., Sakai, T., Ultra-fine grain development in an AZ31 magnesium alloy during multi-directional forging under decreasing temperature conditions, Materials transactions, Vol. 46 (2005) pp. 1646-1650.
[23]. Miura, H., Yu, G., Yang, X., Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties, Materials Science and Engineering: A, Vol. 528 (2011) pp. 6981-6992.
[24]. Miura, H., Maruoka, T., Yang, X., Jonas, J., Microstructure and mechanical properties of multi-directionally forged Mg–Al–Zn alloy, Scripta Materialia, Vol. 66 (2012) pp. 49-51.
[25]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Paul, H., Characterization of ultrafine and nano grained magnesium alloy processed by severe plastic deformation, Materials Characterization, Vol. 87 (2014) pp. 27-35.
[26]. Yamashita, A., Horita, Z., Langdon, T., Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Materials Science and Engineering A, Vol. 300 (2001) pp. 142-147.
[27]. Horita, Z., Matsubara, K., Makii, K., Langdon, T. G., A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys, Scripta Materialia, Vol. 47 (2002) pp. 255-260.
[28]. Figueiredo, R. B., Langdon, T. G., Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, Materials Science and Engineering: A, Vol. 501 (2009) pp. 105-114.
[29]. Kim, W., Park, J., Wang, J., Yoon, W., Realization of low-temperature superplasticity in Mg–Al–Zn alloy sheets processed by differential speed rolling, Scripta materialia, Vol. 57 (2007) pp. 755-758.
[30]. Máthis, K., Gubicza, J., Nam, N., Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing, Journal of Alloys and Compounds, Vol. 394 (2005) pp. 194-199.
[31]. Kim, W., Hong, S., Kim, Y., Min, S., Jeong, H., Lee, J., Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, Vol. 51 (2003) pp. 3293-3307.
[32]. Guo, Q., Yan, H., Chen, Z., Zhang, H., Grain refinement in as-cast AZ80 Mg alloy under large strain deformation, Materials Characterization, Vol. 58 (2007) pp. 162-167.
[33]. Zhao, Z., Chen, Q., Hu, C., Shu, D., Microstructure and mechanical properties of SPD-processed an as-cast AZ91D + Y magnesium alloy by equal channel angular extrusion and multi-axial forging, Materials & Design, Vol. 30 (2009) pp. 4557-4561.
[34]. Jin, L., Lin, D., Mao, D., Zeng, X., Chen, B., Ding, W., Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion, Materials Science and Engineering: A, Vol. 423 (2006) pp. 247-252.
[35]. Serre, P., Figueiredo, R. B., Gao, N., Langdon, T. G., Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion, Materials Science and Engineering: A, Vol. 528 (2011) pp. 3601-3608.
[36]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Beladi, H., Dynamic recrystallization in AZ31 magnesium alloy, Materials Science and Engineering: A, Vol. 456 (2007) pp. 52-57.
[37]. Berbon, P. B., Langdon, T. G., Tsenev, N. K., Valiev, R. Z., Furukawa, M., Horita, Z., Nemoto, M., Fabrication of bulk ultrafine-grained materials through intense plastic straining, Metallurgical and Materials Transactions A, Vol. 29 (1998) pp. 2237-2243.
[38]. Xu, C., Horita, Z., Langdon, T. G., The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta materialia, Vol. 56 (2008) pp. 5168-5176.
[39]. Xu, C., Horita, Z., Langdon, T. G., The evolution of homogeneity in processing by high-pressure torsion, Acta materialia, Vol. 55 (2007) pp. 203-212.

[40]. Fukuda, Y., Oh-Ishi, K., Horita, Z., Langdon, T., Processing of a low-carbon steel by equal-channel angular pressing, Acta Materialia, Vol. 50 (2002) pp. 1359-1368.
[41] Kang, F., Wang, J. T., Peng, Y., Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy, Materials Science and Engineering: A, Vol. 487 (2008) pp. 68-73.
[42]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Processing of AZ31 magnesium alloy by a new noble severe plastic deformation method, Materials Science and Engineering: A, Vol. 528 (2011) pp. 1334-1339.
[43]. Langdon, T. G., The principles of grain refinement in equal-channel angular pressing, Materials Science and Engineering: A, Vol. 462 (2007) pp. 3-11.
[44]. Kuhlmann-Wilsdorf, D., High-strain dislocation patterning, texture formation and shear banding of wavy glide materials in the LEDS theory, Scripta materialia, Vol. 36 (1997) pp.173-181.
[45]. Kawasaki, M., Horita, Z., Langdon, T. G., Microstructural evolution in high purity aluminum processed by ECAP, Materials Science and Engineering: A, Vol. 524 (2009) pp. 143-150.
[46]. Kim, H., Kim, W., Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation, Materials Science and Engineering A, Vol. 385 (2004) pp. 300-308.
[47]. Xia, K., Wang, J., Wu, X., Chen, G., Gurvan, M., Equal channel angular pressing of magnesium alloy AZ31, Materials Science and Engineering: A, Vol. 410 (2005) pp. 324-327.
[48]. kaibyshev, R., Sitdikov, O., On bulging mechanism of dynamic recrystallisation in: Third International Conference on Recrystallization and Relate Phenomena, 1996.
[49]. Galiyev, A., Kaibyshev, R., Gottstein, G., Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta materialia, Vol. 49 (2001) pp. 1199-1207.
[50]. Kaibyshev, R., Galiev, A., Sitdikov, O., On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys, Nanostructured Materials, Vol. 6 (1995) pp. 621-624.
[51]. Furukawa, M., Utsunomiya, A., Matsubara, K., Horita, Z., Langdon, T., Influence of magnesium on grain refinement and ductility in a dilute Al-Sc alloy, Acta materialia, Vol. 49 (2001) pp. 3829-3838.
[52]. Sun, D., Chang, C., Kao, P., Microstructural Aspects of Grain Boundary Bulge in a Dynamically Recrystallized Mg-Al-Zn Alloy, Metallurgical and Materials Transactions A, Vol. 41 (2010) pp. 1864-1870.
[53]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Cabrera, J., Calvillo, P., EBSD characterization of repetitive grain refinement in AZ31 magnesium alloy, Materials Chemistry and Physics, Vol. 149 (2015) pp. 339-343.
[54]. Wu, P., Chang, C., Kao, P., The distribution of dislocation walls in the early processing stage of equal channel angular extrusion, Materials Science and Engineering: A, Vol. 374 (2004) pp. 196-203.
[55]. Segal, V., Deformation mode and plastic flow in ultra fine grained metals, Materials Science and Engineering: A, Vol. 406 (2005) pp. 205-216.
[56]. Huang, X., Suzuki, K., Watazu, A., Shigematsu, I., Saito, N., Microstructural and textural evolution of AZ31 magnesium alloy during differential speed rolling, Journal of Alloys and Compounds, Vol. 479 (2009) pp. 726-731.
[57]. Klimanek, P., Pötzsch, A., Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates, Materials Science and Engineering A, Vol. 324 (2002) pp. 145-150.
[58]. Lapovok, R., Tóth, L., Molinari, A., Estrin, Y., Strain localisation patterns under equal-channel angular pressing, Journal of the Mechanics and Physics of Solids, Vol. 57 (2009) pp. 122-136.
[59]. Quadir, M., Ferry, M., Al-Buhamad, O., Munroe, P., Shear banding and recrystallization texture development in a multilayered Al alloy sheet produced by accumulative roll bonding, Acta Materialia, Vol. 57 (2009) pp. 29-40.
[60]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Naderi, M., Roostaei, A. A., Deformation homogeneity in accumulative back extrusion processing of AZ31 magnesium alloy, Journal of Alloys and Compounds, Vol. 507 (2010) pp. 207-214.

[61]. Murr, L., Trillo, E., Pappu, S., Kennedy, C., Adiabatic shear bands and examples of their role in severe plastic deformation, Journal of materials science, Vol. 37 (2002) pp. 3337-3360.
[62]. Su, C., Lu, L., Lai, M., A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies, Materials Science and Engineering: A, Vol. 434 (2006) pp. 227-236.
[63]. Barnett, M., Keshavarz, Z., Beer, A., Ma, X., Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy, Acta materialia, Vol. 56 (2008) pp. 5-15.
[64]. Sakai, T., Miura, H., Mechanical Properties of Fine-Grained Magnesium Alloys Processed by Severe Plastic Forging, Intechopen.
[65]. Eskandari, M., Ductility Improvement in AZ31 Magnesium Alloy Using Constrained Compression Testing Technique”, Materials Science and Engineering A, Vol. 576 (2013) pp. 74–81.
[66]. Kim, W., An, C., Kim, Y., Hong, S., Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing, Scripta materialia, Vol. 47 (2002) pp. 39-44.
[67]. Li, J., Xu, W., Wu, X., Ding, H., Xia, K., Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature, Materials Science and Engineering: A, Vol. 528 (2011) pp. 5993-5998.
[68]. Janeček, M., Yi, S., Král, R., Vrátná, J., Kainer, K., Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP, Journal of materials science, Vol. 45 (2010) pp. 4665-4671.
[69]. Yoshida, Y., Cisar, L., Kamado, S., Kojima, Y., Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy, Materials transactions, Vol. 44 (2003) pp. 468-475.