Hydrothermal synthesized α-Fe2O3/Mn2O3 nanocomposite for efficient photodegradation of methylene blue under visible light

Document Type : Research Paper

Author

Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran

10.22059/jufgnsm.2025.01.12

Abstract

Treating wastewater using transition metal oxide nanocomposites as efficient photocatalysts has received more attention in recent years. In this work, to develop a new efficient photocatalyst based on metal oxides, the α-Fe2O3/Mn2O3 heterojunction nanocomposite was prepared via a facile one-pot hydrothermal precipitate technique and characterized by FT-IR, XRD, UV-Vis, PL, SEM and TEM techniques. The results confirm the successful formation of α-Fe2O3/Mn2O3 nanocomposite. The as-prepared α-Fe2O3/Mn2O3 was assessed for the photodegradation of methylene blue (MB) as a model wastewater under visible light irradiation. The photocatalytic activity for degradation of MB was calculated to be 96.7% within 90 min. The kinetics of experimental data were studied using the Langmuir mechanism, resulting in a rate constant of 0.02521 min-1. The effect of different scavengers on photodegradation efficiency was investigated and the results predicted that the O2-° radicals are responsible for the degradation of MB dye molecules. The reusability after six cycles was studied without significant activity change, confirming the photocatalytic efficiency and stability of α-Fe2O3/Mn2O3 nanocomposite. Therefore, the as-prepared α-Fe2O3/Mn2O3 is a promising photocatalyst in the photodegradation of other organic dyes.

Keywords


  1. Panchal, P., Paul, D. R., Sharma, A., Hooda, D., Yadav, R., Meena, P., & Nehra, S. P. (2019). Phytoextract mediated ZnO/MgO nanocomposites for photocatalytic and antibacterial activities. Journal of Photochemistry and Photobiology A: Chemistry, 385, 112049.
  2. Haruna, M., Eshun, F., Bandoh, C. K., Agorku, E. S., Francis, O., Asare–Donkor, N. K., & Adimado, A. A. (2024). Binary Ce-doped-ZnO/rGO composite as excellent photocatalyst for bromothymol blue dye degradation. Sustainable Chemistry for the Environment, 5, 100069.
  3. Ullah, S., Shahid, W., Shahid, S., Khan, M. I., Ansar, N., Khizar, M., ... & Alreshidi, M. A. (2023). Advancing photocatalysis: Innovative approaches using novel V2O5/ZnO nanocomposites for efficient photocatalytic degradation of tubantin red. Journal of Saudi Chemical Society, 27(6), 101766.
  4. Noruozi, A., & Nezamzadeh-Ejhieh, A. (2020). Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue. Chemical Physics Letters, 752, 137587.
  5. Norouzi, A., & Nezamzadeh-Ejhieh, A. (2020). α-Fe2O3/Cu2O heterostructure: Brief characterization and kinetic aspect of degradation of methylene blue. Physica B: Condensed Matter, 599, 412422.
  6. Aboutaleb, W. A., & El-Salamony, R. A. (2019). Effect of Fe2O3-CeO2 nanocomposite synthesis method on the Congo red dye photodegradation under visible light irradiation. Materials Chemistry and Physics, 236, 121724.
  7. Arzaee, N. A., Betti, N., Al-Amiery, A., & Isahak, W. N. R. W. (2023). The role of tin species in doped iron (III) oxide for photocatalytic degradation of methyl orange dye under UV light. Heliyon, 9(7) e18076.
  8. Botsa, S. M., Naidu, G. P., Ravichandra, M., Rani, S. J., Anjaneyulu, R. B., & Ramana, C. V. (2020). Flower like SnO2-Fe2O3-rGO ternary composite as highly efficient visible light induced photocatalyst for the degradation of organic pollutants from contaminated water. Journal of Materials Research and Technology, 9(6), 12461-12472.
  9. Bameri, I., Saffari, J., Baniyaghoob, S., & Ekrami-Kakhki, M. S. (2022). Synthesis of magnetic nano-NiFe2O4 with the assistance of ultrasound and its application for photocatalytic degradation of Titan Yellow: Kinetic and isotherm studies. Colloid and Interface Science Communications, 48, 100610.
  10. Wang, R., Cao, J., Liu, J., & Zhang, Y. (2023). Synthesis of CuO@TiO2 nanocomposite and its photocatalytic and electrochemical properties. Application for treatment of azo dyes in industrial wastewater. International Journal of Electrochemical Science, 18(12), 100316.
  11. Kabadayi, O., Altintig, E., & Ballai, G. (2024). Zeolite supported zinc oxide nanoparticles composite: Synthesis, characterization, and photocatalytic activity for methylene blue dye degradation. Desalination and Water Treatment, 100433.
  12. Saeed, M., Albalawi, K., Khan, I., Akram, N., Abd El-Rahim, I. H., Alhag, S. K., & Ahmed, A. E. (2023). Synthesis of pn NiO-ZnO heterojunction for photodegradation of crystal violet dye. Alexandria Engineering Journal, 65, 561-574.
  13. Ashiegbu, D. C., & Potgieter, H. J. (2023). ZnO-based heterojunction catalysts for the photocatalytic degradation of methyl orange dye. Heliyon, 9(10).
  14. Mohammed El Amine, Z., Tennouga, L., Brahim, B., & Belkaid, S. (2024). Removal of Methylene Blue Dye from an Aqueous Solution by an Adsorption Technique Using Sulfonated Polystyrene as Three Low-cost Adsorbents. Physical Chemistry Research, 12(2), 453-465.
  15. Foroutan, R., Peighambardoust, S. J., Ghojavand, S., Foroughi, M., Ahmadi, A., Bahador, F., & Ramavandi, B. (2024). Development of a magnetic orange seed/Fe3O4 composite for the removal of methylene blue and crystal violet from aqueous media. Biomass Conversion and Biorefinery, 14(20), 25685-25700.
  16. Umesh, A. S., Puttaiahgowda, Y. M., & Thottathil, S. (2024). Enhanced adsorption: Reviewing the potential of reinforcing polymers and hydrogels with nanomaterials for methylene blue dye removal. Surfaces and Interfaces, 104670.
  17. Li, P., Zhang, J., Yu, Y., Jia, W., & Zhao, S. (2024). A collaborative coagulation strategy for algae-laden and dye-containing water treatment. Journal of Cleaner Production, 141146.
  18. Benalia, A., Derbal, K., Baatache, O., Lehchili, C., Khalfaoui, A., & Pizzi, A. (2024). Removal of Dyes from Water Using Aluminum-Based Water Treatment Sludge as a Low-Cost Coagulant: Use of Response Surface Methodology. Water, 16(10), 1400.
  19. Noor, M. H. M., & Ngadi, N. (2024). Global research landscape on coagulation-flocculation for wastewater treatment: A 2000–2023 bibliometric analysis. Journal of Water Process Engineering, 64, 105696.
  20. Pivokonsky, M., Novotna, K., Petricek, R., Cermakova, L., Prokopova, M., & Naceradska, J. (2024). Fundamental chemical aspects of coagulation in drinking water treatment–Back to basics. Journal of Water Process Engineering, 57, 104660.
  21. Ribeiro, J. P., Sarinho, L., & Nunes, M. I. (2024). Application of life cycle assessment to Fenton processes in wastewater treatment–A review. Journal of Water Process Engineering, 57, 104692.
  22. Yan, S., Liang, X., Liu, S., Zhang, Y., Zeng, J., Bai, J., ... & Li, J. (2024). Synthesis of PANI@ α-Fe2O3/Al2O3 photo-Fenton composite for the enhanced efficient methylene blue removal. Journal of Sol-Gel Science and Technology, 109(1), 137-149.
  23. Uluçtan, P. S., Eroğlu, H. A., Kadıoğlu, E. N., & Akbal, F. (2025). Decolorization of Acid Red 337 dye with hydroxyl and sulfate radical based advanced oxidation processes using different iron Catalyst: An experimental and statistical Investigation. Journal of Photochemistry and Photobiology A: Chemistry, 459, 116105.
  24. Wu, T., Hu, Z., Yang, J., Jia, Y., Dong, Z., Tang, Y., & Zhang, Y. (2025). Insight into the roles of Cl for the degradation of Acid Red 14 in an electrochemical advanced oxidation system: Mechanisms and DFT studies. Chemical Engineering Journal, 503, 158079.
  25. Noshadi, E., Changizian, M., & Behbahani-Nejad, M. (2025). Enhancing wastewater treatment efficiency through hydrodynamic cavitation and advanced oxidation processes: Experimental insights and comparative analysis. Journal of the Taiwan Institute of Chemical Engineers, 166, 105604.
  26. Rini, N. P., Istiqomah, N. I., & Suharyadi, E. (2023). Enhancing photodegradation of methylene blue and reusability using CoO/ZnO composite nanoparticles. Case Studies in Chemical and Environmental Engineering, 7, 100301.
  27. Madkour, M., Allam, O. G., Abdel Nazeer, A., Amin, M. O., & Al-Hetlani, E. (2019). CeO2-based nanoheterostructures with p–n and n–n heterojunction arrangements for enhancing the solar-driven photodegradation of rhodamine 6G dye. Journal of Materials Science: Materials in Electronics, 30, 10857-10866.
  28. El-Sayed, F., Ganesh, V., Hussien, M. S., AlAbdulaal, T. H., Zahran, H. Y., Yahia, I. S., ... & Bitla, Y. (2022). Facile synthesis of Y2O3/CuO nanocomposites for photodegradation of dyes/mixed dyes under UV-and visible light irradiation. Journal of Materials Research and Technology, 19, 4867-4880.
  29. Bukit, B. F., Pratama, A. W., Frida, E., Sedayu, B. B., Fransiska, D., Purnomo, D., ... & Syamani, F. A. (2025). Eco-friendly alginate/PCL-TiO2 hybrid biocomposites: Preparation, properties, and methylene blue photodegradation. South African Journal of Chemical Engineering, 51, 254-264.
  30. Boucherdoud, A., Seghier, A., Kherroub, D. E., Douinat, O., Dahmani, K., Bestani, B., & Benderdouche, N. (2025). Autogenous deposition of copper oxide onto polyaniline nanocomposite catalysts for the photodegradation of methylene blue and congo red: Experimental inquiry, RSM optimization, and DFT calculation. Materials Science and Engineering: B, 314, 118015.
  31. Zhu, Y., Jiang, C., Meng, T., Yao, J., Peng, Z., Wang, P., ... & Zhao, Y. (2025). Heterojunction Engineering of g-C3N4 with Superior Photogenerated Electron Transfer for Boosting Photodegradation of Methylene Blue. Optical Materials, 116626.
  32. Hussain, M. H., & Pozan Soylu, G. S. (2025). Synthesis of Ionic Liquid-Assisted Nanoparticles: High Activity, Fast Removal for Photodegradation of Methylene Blue in Water. Water, Air, & Soil Pollution, 236(2), 1-20.
  33. Rini, N. P., Istiqomah, N. I., & Suharyadi, E. (2023). Enhancing photodegradation of methylene blue and reusability using CoO/ZnO composite nanoparticles. Case Studies in Chemical and Environmental Engineering, 7, 100301.
  34. Suliman, Z. A., Mecha, A. C., & Mwasiagi, J. I. (2024). Effect of TiO2/Fe2O3 nanopowder synthesis method on visible light photocatalytic degradation of reactive blue dye. Heliyon, 10(8).
  35. Zeb, M., Anjum, Z., Mumtaz, S., Khalid, M., & Hafeez, M. (2024). Jasminum mesyni mediated synthesis of Co3O4/NiO nanocomposite for methylene blue degradation. Desalination and Water Treatment, 317, 100165.
  36. Vallarasu, K., Dinesh, S., Mithun, D., Anitha, R., & Vijayalakshmi, V. (2024). ZnO heterojunction photocatalysts prepared via facile green synthesis process attaining improved photocatalytic function for degradation of methylene blue dye. Desalination and Water Treatment, 318, 100391.
  37. Kannan, K., Hemavathi, B., Radhika, D., Manjunath, H. R., Kumar, K., Lakkaboyana, S. K., ... & Raghu, A. V. (2024). Facile synthesis of novel ZnO-MgO nanohybrids and its photocatalytic degradation of toxic pollutants. Desalination and Water Treatment, 317, 100125.
  38. Alp, E., Eşgin, H., Kazmanlı, M. K., & Genc, A. (2019). Synergetic activity enhancement in 2D CuO-Fe2O3 nanocomposites for the photodegradation of rhodamine B. Ceramics International, 45(7), 9174-9178.
  39. Kim, S., Gupta, N. K., Bae, J., & Kim, K. S. (2021). Fabrication of coral-like Mn2O3/Fe2O3 nanocomposite for room temperature removal of hydrogen sulfide. Journal of Environmental Chemical Engineering, 9(3), 105216.
  40. Ghaffari, Y., Gupta, N. K., Bae, J., & Kim, K. S. (2020). One-step fabrication of Fe2O3/Mn2O3 nanocomposite for rapid photodegradation of organic dyes at neutral pH. Journal of Molecular Liquids, 315, 113691.
  41. Baek, S., Ghaffari, Y., & Bae, J. (2022). Synthesis of Fe2O3/Mn2O3 nanocomposites and impregnated porous silicates for dye removal: insights into treatment mechanisms. Catalysts, 12(9), 1045.
  42. Yang, Z., Zhu, J., Tang, W., & Ding, Y. (2022). An Fe2O3/Mn2O3 Nanocomposite Derived from a Metal‐Organic Framework as an Anode Material for Lithium‐ion Batteries. Chemistryselect, 7(42), e202203107.
  43. Hassan, S. S., El-Shalakany, H. H., Fathy, M. A., & Kamel, A. H. (2024). A magnetic macroporous α-Fe2O3/Mn2O3 nanocomposite as an efficient adsorbent for simple and rapid removal of Pb (II) from wastewater and electronic waste leachate. Environmental Science and Pollution Research, 31(57), 65648-65660.
  44. Eslami, H., Ehrampoush, M. H., Esmaeili, A., Ebrahimi, A. A., Salmani, M. H., Ghaneian, M. T., & Falahzadeh, H. (2018). Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design. Chemosphere, 207, 303-312.
  45. Khalaji, A. D., & Jafari, E. (2023). Co-precipitation synthesis of α-Fe2O3: Characterization and their activities on photocatalytic degradation of methylene blue. Inorganic Chemistry Research, 7(1), 27-33.
  46. Khalaji, A. D., Palang Sangdevini, Z., Mousvi, S. M., Jarosova, M., & Machek, P. (2021b). Benzoic acid-functionalized α-Fe2O3 nanoparticles: synthesis, characterization, magnetic and optical properties. Asian J. Nanosci. Mater, 4, 137-146.
  47. Sadeq, Z. S. (2019). Structural and optical study of Mn2O3 nanoparticles and its antibacterial activity. Sylwan, 161, 76-84.
  48. Sobhani, A. (2023). CuMn2O4/Mn2O3 micro composites: Sol-gel synthesis in the presence of sucrose and investigation of their photocatalytic properties. Arabian Journal of Chemistry, 16(10), 105201.
  49. Dhineshbabu, N. R., Rajendran, V., Nithyavathy, N., & Vetumperumal, R. (2016). Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience, 6, 933-939
  50. Boltaev, G. S., Ganeev, R. A., Krishnendu, P. S., Zhang, K., & Guo, C. (2019). Nonlinear optical characterization of copper oxide nanoellipsoids. Scientific Reports, 9(1), 11414.
  51. Deepthi, S., Vidya, Y. S., Manjunatha, H. C., Sridhar, K. N., Manjunatha, S., Munirathnam, R., & Ganesh, T. (2023). Comparison of cytotoxic and photoluminescence properties between Fe2O3 and Fe3O4. Inorganic Chemistry Communications, 156, 111101.
  52. Popa, A., Stefan, M., Macavei, S., Muresan, L. E., Leostean, C., Floare-Avram, C. V., & Toloman, D. (2023). Photoluminescence and Photocatalytic Properties of MWNTs Decorated with Fe-Doped ZnO Nanoparticles. Materials, 16(7), 2858.
  53. Shugabaev, T., Gridchin, V. O., Komarov, S. D., Kirilenko, D. A., Kryzhanovskaya, N. V., Kotlyar, K. P., ... & Cirlin, G. E. (2023). Photoluminescence redistribution of InGaN nanowires induced by plasmonic silver nanoparticles. Nanomaterials, 13(6), 1069.
  54. Kallawar, G. A., & Bhanvase, B. A. (2024). A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environmental Science and Pollution Research, 31(2), 1748-1789.
  55. Zafar, A. M., Naeem, A., Minhas, M. A., Hasan, M. J., Rafique, S., & Ikhlaq, A. (2024). Removal of reactive dyes from textile industrial effluent using electrocoagulation in different parametric conditions of aluminum electrodes. Total Environment Advances, 9, 200087.
  56. Weldegebrieal, G. K., & Sibhatu, A. K. (2021). Photocatalytic activity of biosynthesized α-Fe2O3 nanoparticles for the degradation of methylene blue and methyl orange dyes. Optik, 241, 167226.
  57. Salehzadeh, H., Wantala, K., Mohammadi, E., Shivaraju, H. P., Shahmoradi, B., Rtimi, S., ... & Safari, M. (2023). Solar photodegradation of malathion from aqueous media using Al-doped ZnO/Fe3O4 nanocomposite. Catalysis Communications, 184, 106785.
  58. Arumugaperumal, V., & Sadaiyandi, K. (2024). Solar light driven photocatalytic degradation of methylene blue dye over Cu doped α-MnO2 nanoparticles. Chemical Physics Impact, 8, 100434.
  59. Basavanagoudra, H., Jangannanavar, V. D., Patil, M. K., Inamdar, S. R., & Goudar, K. M. (2024). Barium oxide nanorods: Catalyst concentration and surface defects' role in degrading methylene blue organic pollutant. Chemical Physics Impact, 8, 100578.
  60. Thambidurai, R., Gobi, G., Chandrasekar, M., Uthrakumar, R., Inmozhi, C., & Kaviyarasu, K. (2023). ZnO nanocomposites containing Cd are synthesized with high photodegradation potential for wastewater treatment. Journal of King Saud University-Science, 35(9), 102915.
  61. Widiyandari, H., Prilita, O., Al Ja'farawy, M. S., Nurosyid, F., Arutanti, O., Astuti, Y., & Mufti, N. (2023). Nitrogen-doped carbon quantum dots supported zinc oxide (ZnO/N-CQD) nanoflower photocatalyst for methylene blue photodegradation. Results in Engineering, 17, 100814.
  62. Liu, Y., Liu, T., Zhang, L., Wu, H., Guo, J., & Hu, X. (2023). One-pot synthesized NiFe2O4/CeO2 composite catalyst for efficient degradation of methylene blue via photocatalysis under visible light. Catalysis Communications, 185, 106814.
  63. Makofane, A., Motaung, D. E., & Hintsho-Mbita, N. C. (2024). Green synthesis of silver deposited on copper ferrite nanoparticles for the photodegradation of dye and antibiotics. Applied Surface Science Advances, 21, 100601.
  64. Perumal, V., Uthrakumar, R., Chinnathambi, M., Inmozhi, C., Robert, R., Rajasaravanan, M. E., ... & Kaviyarasu, K. (2023). Electron-hole recombination effect of SnO2-CuO nanocomposite for improving methylene blue photocatalytic activity in wastewater treatment under visible light. Journal of King Saud University-Science, 35(1), 102388.
  65. Weldekirstos, H. D., Mengist, T., Belachew, N., & Mekonnen, M. L. (2024). Enhanced photocatalytic degradation of methylene blue dye using fascily synthesized g-C3N4/CoFe2O4 composite under sun light irradiation. Results in Chemistry, 7, 101306.
  66. Chong, C. Y., Sum, J. Y., Lai, L. S., Toh, P. Y., & Chang, Z. H. (2024). Visible light-driven dye degradation by magnetic cobalt-doped zinc oxide/iron oxide photocatalyst. Next Materials, 2, 100074.
  67. Din, M. I., Khalid, R., Hussain, Z., Gul, S., & Mujahid, A. (2024). Synthesis and characterization of cobalt doped zinc oxide nanoparticles and their application for catalytic reduction of methylene blue dye. Desalination and Water Treatment, 317, 100002.
  68. Goudjil, M. B., Dali, H., Zighmi, S., Mahcene, Z., & Bencheikh, S. E. (2024). Photocatalytic degradation of methylene blue dye with biosynthesized Hematite α-Fe2O3 nanoparticles under UV-Irradiation. Desalination and Water Treatment, 317, 100079.
  69. Nguyen, T. T. D., Nguyen, D., Vo, P. P., Doan, H. N., Pham, H. T. N., Hoang, V. H., ... & Nguyen, P. T. (2023). The roles of ethanol and isopropanol as hole scavengers in the photoreduction reaction of graphene oxide by TiO2: A competition of oxygenated groups removal and carbon defects invasion. Journal of Molecular Liquids, 381, 121831.
  70. Resende, J. E., Gonçalves, M. A., Oliveira, L. C., da Cunha, E. F., & Ramalho, T. C. (2014). Use of ethylenediaminetetraacetic acid as a scavenger for chromium from “wet blue” leather waste: Thermodynamic and kinetics parameters. Journal of Chemistry, 2014(1), 754526.
  71. Martín-Gómez, J., Pérez-Losada, M., López-Tenllado, F. J., Hidalgo-Carrillo, J., Herrera-Beurnio, M. C., Estévez, R., ... & Urbano, F. J. (2024). Insight into the reaction mechanism of photocatalytic production of solketal. Catalysis Today, 429, 114506.
  72. Henderson, M. A., & Shen, M. (2017). Electron-scavenging chemistry of benzoquinone on TiO 2 (110). Topics in Catalysis, 60, 440-445.