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1. Introduction
Recently, heterojunction metal oxide 

semiconductors have great attention for their 
unique properties and novel potential applications 
in various fields due to their small size and high 
surface area [1-3]. Among the various transition 
metal oxide semiconductors, hematite (α-Fe2O3), 
an n-type semiconductor with a low band gap of 
2-2.3 eV, chemically stable, low-cost and non-toxic 
is the most metal oxide that could be utilized in 
the photodegradation of different organic dyes 
[4-6]. Today, water purification is an important 
challenge for human health across the world [7,8]. 

Due to various industrial activities, the production 
capacity of them is more than 700000 tons annually 
[9]. Therefore, many dangerous organic dyes, 
140000 tons over 10000 types of dyes [9], were 
released into the environment, especially water 
resources, which can affect water gas solubility, 
transparency and lead to serious environmental 
imbalances [10]. Wastewater including organic 
dyes has a cancer-casing impact on human health 
[3] because organic dyes are very stable, toxic, and 
non-biodegradable [11-13]. Now, many techniques 
have been used to remove organic dyes from 
wastewater such as adsorption [14-16], coagulation 
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[17-20], and advanced oxidation [21-25]. The 
main disadvantage of these techniques is that they 
transfer the different organic dyes between two 
different phases, leading to a secondary pollutant. 
Therefore, the development of an efficient 
technique such as photocatalytic degradation 
has become a necessity [26-32]. Recently, 
nanocomposites prepared from two different metal 
oxides exhibit high catalytic properties under light 
irradiation to degrade different organic dyes [33-
37]. For example, heterojunction α-Fe2O3-ZnO and 
α-Fe2O3-Cu2O nanocomposites were synthesized 
and used for the degradation of methylene blue in 
an aqueous solution [4,5]. Two-dimensional CuO-
Fe2O3 nanocomposites were prepared by a simple 
hydrothermal technique and used as a photocatalyst 
to degrade rhodamine B under simulated sunlight 
[38]. By the precipitation and modified sol-gel auto-
combustion methods, Fe2O3-CeO2 nanocomposites 
were synthesized and used for the degradation 
of congo red under visible light irradiation 
[6]. Rini et al. [33] successfully synthesized 

CoO/ZnO nanocomposite for enhancing the 
photodegradation of methylene blue. 100% removal 
of reactive blue dye within 2 h was done by the as-
prepared TiO2/Fe2O3 nanocomposites [34]. Co3O4/
NiO was prepared via an environment-friendly 
technique for photodegradation of methylene blue 
(92.8%) within 80 min [35].

In recent years, many articles have been reported 
on the synthesis of α-Fe2O3/Mn2O3 nanocomposite 
with different applications. For example, coral-like 
Mn2O3/Fe2O3 nanocomposite was synthesized by 
a one-step surfactant-mediated co-precipitation 
for removal of H2S [39], dye degradation [40,41], 
as anode material for lithium-ion batteries [42], 
lead (II) removal from industrial wastewater [43] 
and the photocatalytic oxidation process in As(III) 
removal from contaminated water [44].

This work aims to synthesize a new heterojunction 
α-Fe2O3/Mn2O3 nanocomposite (Scheme 1) via the 
hydrothermal precipitate technique and study its 
photodegradation efficiency towards methylene 
blue under visible light. 

 

  Scheme. 1- Synthesis schematic of α-Fe2O3/Mn2O3.
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2. Experimental
2.1. Materials

Fe2(SO4)3, MnSO4, benzoic acid, NaOH were 
purchased from Merck company and used as 
received without further purification.

2.2. Characterization
FT-IR spectrum was recorded using a Perkin-

Elmer spectrometer in the range of 400-4000 
cm-1. The crystalline phase was determined by a 
Shimadzu 6100 X-ray diffractometer with Cu-
kα radiation and λ = 1.5406 Å in the scan range 
of 20-70°. UV-Vis spectrum was performed by 
a Shimadzo UV-Vis 3600 PLUS analysis. The PL 
spectrum was recorded at room temperature by 
use of a Shimadzu RF-5301 PC spectrophotometer. 
The SEM images were carried out by a Thermo 
scientific Apreo S scanning electron microscope 
with an acceleration voltage of 200 kV.

2.3. Synthesis of α-Fe2O3/Mn2O3 
A 1:1 molar ratio of Fe2(SO4)3, and MnSO4, was 

added to 50 mL deionized water and stirred for 
about 30 min at room temperature. Then, benzoic 
acid was added and the mixture was stirred at 70°C 
for 1 h followed by the addition of NaOH solution 
(10 mL, 0.5 M). The mixture was transferred to a 
100 mL Teflon-lined stainless-steel autoclave, and 
conducted at 120°C for 1.5 h. After that, the gray 
precipitates of a mixture of Fe(OH) 3 and Mn(OH)2 
were collected by centrifuging, washed with 
deionized water, and dried at 80 °C. Finally calcined 
at 500°C for 3h.  The black powders α-Fe2O3/Mn2O3 
nanocomposite were washed with deionized water, 
dried at 80 °C and finally characterized by FT-IR, 
XRD, UV-Vis, PL, and SEM techniques.

2.4. Photocatalytic studies
Photodegradation of MB dye with a 

concentration of 30 mg/L catalyzed by as-prepared 
α-Fe2O3/Mn2O3 nanocomposite was carried out 
by adding a suitable amount (0.005 g, 0.01 g, and 
0.02 g) of catalyst to a 50 mL solution of MB dye. 
Initially, the mixture was stirred under the dark 
condition for 30 min. Then, the solution was 
irradiated under visible light to expose the MB 
dye molecules. Finally, 5 mL of the mixture was 
collected, and centrifuged and dye concentration 
was determined by UV-Vis spectrum. The 
photodegradation percentage was calculated by 
the following equation (eq. 1), where Co (mg/L) 
and Ct (mg/L) are the concentration of dyes at 
equilibrium and t time, respectively.

 

 

×                                  (1)
 

2.5. Reusability
After each photodegradation process, the Fe2O3/

Mn2O3 nanocomposite was centrifuged, washed 
with DI water and dried at 80 °C for 3 h. Then, it 
was poured to the HCl solution (20 mL, 0.1 M) 
and stirred for about 0.5 h. After that, the Fe2O3/
Mn2O3 nanocomposite was centrifuged, washed 
with NaOH solution (0.1 M) and DI water (20 mL), 
dried at 80 °C for 3 h and the dried product was 
used in a photodegradation process.

3. Results and discussion
3.1. Characterization
3.1.1. FT-IR Spectra

The FTIR provides important insights into 
the functional groups present in the synthesized 
sample. In the FT-IR spectrum of Fe2O3/Mn2O3 
nanocomposite before the photodegradation 
process (Fig. 1a and 1b), the weak and broad bands 
observed at about 3380 cm-1 and 1645 cm-1 are 
assigned to the O-H vibration of water molecules 
adsorbed on the surface of as-prepared α-Fe2O3/
Mn2O3 nanocomposite [4,5,45,46]. The sharp 
bands observed at 485 cm-1, 533 cm-1, 575 cm-1, 
605 cm-1, and 670 cm-1 are assigned to the M-O 
and M-O-M vibration of as-prepared Fe2O3/Mn2O3 
nanocomposite [8,14,45]. Similar vibration peaks 
were seen in the FT-IR spectrum of Fe2O3/Mn2O3 
nanocomposite after the photodegradation process 
(Fig. 1c and 1d), confirming that the stability of the 
Fe2O3/Mn2O3 product after the photodegradation 
process.

3.1.2. XRD patterns
X-ray diffraction (XRD) is a versatile technique 

for the analysis of the phase composition and 
crystal structure of samples. Similar XRD patterns 
of Fe2O3/Mn2O3 nanocomposite before and after the 
photodegradation process were shown in Fig. 2a and 
2b, respectively, confirming that the stability of the 
Fe2O3/Mn2O3 product after the photodegradation 
process. In the XRD pattern (Fig. 2), the diffraction 
peaks assigned to the α- Fe2O3 were observed at 
2θ values of 24.15 (012), 32.83 (104), 35.59 (110), 
40.76 (006), 49.31 (024), 54.06 (116), 57.59 (122), 
62.44 (214) and 64.01° (300) were matched with 
tetragonal structure of α-Fe2O3 [45,46]. While, 
the diffraction peaks at 2θ values of 22.93 (211), 
32.91 (222), 38.11 (400), 45.21 (332), 49.29 (431), 
55.06 (440), 59.66 (611), 65.66 (662), 67.31 (631) 
and 69.06° (444) were matched with the tetragonal 
structure of Mn2O3 [47,48]. Using the Scherrer 
equation (D = 0.9 λ / β cosθ), the crystallite size 
was calculated at about 29.51 nm.  The intensities 
of diffraction peaks confirm the good crystallinity 
of α- Fe2O3/Mn2O3 nanocomposite. Also, the XRD 
pattern is free of impurities.

3.1.3. UV-Vis and PL spectra
The UV-Vis and PL spectra are shown in Figs. 
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Fig. 1- FT-IR spectrum of as-prepared α-Fe2O3/Mn2O3 nanocomposite before (a,b) and after (c,d) MB photodegradation process.

Fig. 2- XRD pattern of as-prepared α-Fe2O3/Mn2O3 nanocomposite a) before and b) after photodegradation process.
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3a and 3b, respectively. It can be seen that the as-
prepared α-Fe2O3/Mn2O3 nanocomposite can be 
adsorbed light at about 210 nm assigned to the 
direct transition of electrons and 275 nm assigned 
to the surface plasmon resonance (SPR) (Fig. 3a) 
[49,50]. Also, a weak absorption peak is observed at 
about 575 nm assigned to the charge transfer [46].

In the PL spectrum (Fig. 3b), a strong 
luminescence band at 323 nm and two broad peaks 
at about 427 and 642 nm were observed, these are 
assigned to deep-level defects and the recombination 
of electrons and holes at oxygen vacancies of the 
Fe2O3/Mn2O3 nanocomposite [51-53].

3.1.4. SEM and TEM images
Fe-SEM and TEM images of as-prepared 

α-Fe2O3/Mn2O3 nanocomposite before and after 
the photodegradation process are shown in Fig. 
4a-4d. The sample exhibits different shapes with 
high agglomerated together to form an irregular 
morphology. TEM results confirmed that the 
particle sizes are below 100 nm.

3.2. MB photodegradation
3.2.1. The effect of pH solution

The as-prepared α-Fe2O3/Mn2O3 nanocomposite 
was used as a photocatalyst for the photodegradation 

of methylene blue dye, which is generally present in 
different industrial wastewaters [54-58]. The results 
of photodegradation of MB under visible light at 
different pH solutions (2-12) (Fig. 5) demonstrated 
a high percentage degradation of 96.7% at pH 
of 10, 0.02 g catalyst, and 120 min irradiation 
time, due to the increased electrostatic force of 
attraction between the cationic MB molecules 
onto the negative charge surface of α-Fe2O3/Mn2O3 
nanocomposite. While, in a low pH solution, MB 
removal is low due to the competitive interactions 
between H+ and MB molecules as a cationic dye, as 
well as, the repulsive force interactions between the 
surface protonated catalyst and MB molecules [11]. 
Therefore, suitable contact happened between dye 
molecules and photogenerated radical species (O2

-° 
and OH°) [59-68].

3.2.2. The effect of irradiation time and catalyst 
dose

The effect of irradiation time and dose of catalyst 
on the photodegradation efficiency of MB were 
studied and the results were represented in Fig. 6. It 
can be seen that the degradation was increased with 
increases of catalyst dose and also irradiation time. 
Maximum degradation (96.7%) was observed for 
120 min irradiation time and 0.02 g catalyst dose. 

 

  Fig. 3- a) UV-Vis and b) PL spectra of as-prepared α-Fe2O3/Mn2O3 nanocomposite.
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  Fig. 4- SEM and TEM images of as-prepared α-Fe2O3/Mn2O3 nanocomposite before (a,b) and after (c,d) photodegradation process.

 

  Fig. 5- The effect of initial pH solution on the photodegradation efficiency of MB.
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The degradation of MB did not show an increase 
after 120 min, due to the exhausting of the surface 
sites [65]. Because of the increases in dose and time 
cause the increases of active sites and dye adsorbed 
on the surface of the catalyst, respectively [1,2,56]. 
Also, by increasing of dose catalyst from 0.005 to 
0.02 g, the absorption of more light photons increases 
the number of electron-hole pairs producing more 
active radicals and finally, the MB photodegradation 
increases from 52.1% to 96.7% which is the future of 
heterogeneous catalysis [57-68].

3.2.3. Kinetic study
The Langmuir-Hinshelwood first-order reaction 

kinetics model (eq. 2) was used for studying the kinetics 
of MB dye removal under visible light irradiation using 
as-prepared α-Fe2O3/Mn2O3 nanocomposite as a 

catalyst. The results are shown in Fig. 7 and predicted 
that the process obeyed from pseudo-first-order with 
R2 = 0.9809, confirming occurs the numerous processes 
during the photodegradation of MB [63]. The rate 
constant k = 0.02521 min-1 was calculated from the 
slope of the plot, while the t1/2 (half-life time) value of 
27.49 min was obtained using eq. 3 [4,5,26,28].

 

 

×

                                                           (2)

 

 

×

                                                          (3)

3.2.4. Reusability
After the MB photodegradation process, the 

catalyst was collected, washed with HCl (0.1 M), 
and finally dried at 80°C for 3 h for each run. The 

 

  Fig. 6- The effect of irradiation time and catalyst dose on the photodegradation efficiency of MB.

 

  Fig. 7- ln(C/Co) vs. time graph for the MB photodegradation efficiency.
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photodegradation efficiency results for six runs are 
shown in Fig. 8. The degradation changed from 
96.7% (initially) to 92.6% (sixth run), suggesting 
that the α-Fe2O3/Mn2O3 nanocomposite was 
recyclable [11,33,36,63]. The decreases of MB 
photodegradation after 5 cycles can be attributed by 
1) mass reduction throughout washing and drying 
and 2) the blocking pores and active site [33,36].    

3.3. Photocatalytic mechanism
After visible light irradiation, the as-prepared 

α-Fe2O3/Mn2O3 nanocomposite produces an 
electron-hole pair. Then, the photoinduced holes and 
electrons can be reacted by O2 and H2O molecules 
to produce active superoxide and hydroxyl radicals 
(O2

-° and OH°). Finally, these active radicals can be 
reacted with MB dye molecules adsorbed on the 
surface of the catalyst to degrade them to CO2 and 
H2O molecules and undergo a significant oxidation 
and reduction reactions [58-68]. The proposed MB 
dye photodegradation mechanism with details is 
shown in Scheme 2.

 

  Fig. 8- Reusing of α-Fe2O3/Mn2O3 nanocomposite for the MB photodegradation efficiency.

 

  Scheme. 2- Schematic of MB photodegradation mechanism using α-Fe2O3/Mn2O3 nanocomposite.
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3.4. Trapping studies
The effect of various scavengers such as 

isopropanol (IP) [69], ethylenediaminetetraacetic 
acid (EDTA) [70] and benzoquinone (BQ) [71,72] 
in the MB photodegradation using α-Fe2O3/Mn2O3 
nanocomposite were utilized to scavenge active 
radicals such as OH°, h+, and O2

-°, respectively, and 
the results are shown in Fig. 9. In the absences of 
any scavenger, the α-Fe2O3/Mn2O3 nanocomposite 
had a 96.7% photodegradation efficiency towards 
MB dye. While, in the presence of IP, EDTA, and 
BQ the photodegradation efficiency was lowered to 
84.6%, 59.8%, and 42.1%, respectively. These results 
confirmed that the O2

-° radicals played a significant 

role in the degradation of MB dye molecules rather 
than OH° radicals and h+ [58,63,65,66].

3.5. Comparing with other MB catalysts
The maximum photodegradation efficiency 

of MB using an as-prepared α-Fe2O3/Mn2O3 
nanocomposite was compared with those of 
different other catalysts [33,35,36,58-68], and 
the results are shown in Table 1. The results 
predicted that the as-prepared has good 
photodegradation efficiency compared to other 
catalysts, suggesting that the α-Fe2O3/Mn2O3 
nanocomposite can be used as a suitable catalyst 
in wastewater treatment.

 

 

Table 1- Comparison of the photodegradation efficiency of MB with different catalysts
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4. Conclusion
In summary, the heterojunction Fe2O3/Mn2O3 

was prepared using a hydrothermal method and 
its photocatalytic activity for degrading methylene 
blue dye under visible light was investigated. 
Results showed that the important parameters 
such as pH, irradiation time, and catalyst dose 
significantly impact the degradation process. The 
degradation rate is very fast up to 30 min (59.8%) 
due to the unoccupied active sites on the surface 
of the photocatalyst and was achieved at 96.7% 
after 120 min at a pH value of 10. The degradation 
obeyed from the Langmuir-Hinshelwood first-
order model with an R2 value of 0.9809 with a rate 
constant of 0.02521 min-1 and t1/2 = 27.49 min. The 
photodegradation efficiency of the catalyst changed 
from 96.7% to 92.6% after six recycles, predicting 
the stability of the catalyst. Trapping studies 
predicted that the O2

-° radicals are responsible for 
the degradation of MB dye molecules. The results of 
this work predicted that the as-prepared α-Fe2O3/
Mn2O3 nanocomposite based photocatalyst is a 
simple and highly efficient route to decompose MB 
dye.
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