Luminescent properties of graphene quantum dots (GQDs) functionalized with LCysteine

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11155-9466, Tehran, Iran

10.22059/jufgnsm.2023.01.12

Abstract

Graphene quantum dots (GQDs) are one of the most uprising nanomaterials that have been used in biomedical applications because of their interesting luminescent properties. This work presents a facile way to attach the LCysteine onto the surface of GQDs, which enhances the applicability of the final molecules in biomedical applications. Furthermore, the luminescent properties of synthesized GQDs and LCysteine-GQDs with different methods of prevalent spectroscopy. The obtained GQDs- LCysteine show a red shift in PL results with an increase in wt.% LCysteine compared to GQDs. According to the results, this platform has the potential to be used in many biological applications, such as bio-imaging and bio-labeling.

Keywords


  1. Dabbagh Moghaddam F, Akbarzadeh I, Marzbankia E, Farid M, khaledi L, Reihani AH, et al. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnology. 2021;12(1).
  2. A. Moeini, T. Hassanzadeh Chinijani, A. Malek Khachatourian, M. Vinicius Lia Fook, F. Baino, and M. Montazerian, “A critical review of bioactive glasses and glass–ceramics in cancer therapy,” Int. J. Appl. Glas. Sci., vol. 14, no. 1, pp. 69–87, 2023.
  3. Ahmadi R, Malek M, Hosseini HRM, Shokrgozar MA, Oghabian MA, Masoudi A, et al. Ultrasonic-assisted synthesis of magnetite based MRI contrast agent using cysteine as the biocapping coating. Materials Chemistry and Physics. 2011;131(1-2):170-7.
  4. Masoudi A, Madaah Hosseini HR, Shokrgozar MA, Ahmadi R, Oghabian MA. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. International Journal of Pharmaceutics. 2012;433(1-2):129-41.
  5. Vahdatkhah P, Madaah Hosseini HR, Khodaei A, Montazerabadi AR, Irajirad R, Oghabian MA, et al. Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging. Chemical Physics. 2015;453-454:35-41.
  6. Fu Y, Jang M-S, Wu T, Lee JH, Li Y, Lee DS, et al. Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydrate Polymers. 2019;224:115174.
  7. Vibhute A, Nille O, Kolekar G, Rohiwal S, Patil S, Lee S, et al. Fluorescent Carbon Quantum Dots Functionalized by Poly L-Lysine: Efficient Material for Antibacterial, Bioimaging and Antiangiogenesis Applications. Journal of Fluorescence. 2022;32(5):1789-800.
  8. Yang M, Jin H, Gui R. Ag+-doped boron quantum dots with enhanced stability and fluorescence enabling versatile practicality in visual detection, sensing, imaging and photocatalytic degradation. Journal of Colloid and Interface Science. 2023;639:49-58.
  9. Sahebalzamani H, Mehrani K, Hosseini HRM, Zare K. Effect of Synthesis Temperature of Magnetic–Fluorescent Nanoparticles on Properties and Cellular Imaging. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30(11):4597-605.
  10. Alaghmandfard A, Madaah Hosseini HR. A facile, two-step synthesis and characterization of Fe (3) O (4) -L (Cysteine) -graphene quantum dots as a multifunctional nanocomposite. Applied nanoscience. 2021;11(3):849-60.
  11. Saladino GM, Kakadiya R, Ansari SR, Teleki A, Toprak MS. Magnetoresponsive fluorescent core-shell nanoclusters for biomedical applications. Nanoscale Adv. 2023;5(5):1323-30.
  12. Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini AA, Malek Khachatourian A, Toprak MS, et al. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Materials Science and Engineering: C. 2021;120:111756.
  13. Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications. 2012;48(31):3686.
  14. Li K, Liu W, Ni Y, Li D, Lin D, Su Z, et al. Technical synthesis and biomedical applications of graphene quantum dots. Journal of Materials Chemistry B. 2017;5(25):4811-26.
  15. Choi Y, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, et al. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Journal of Industrial and Engineering Chemistry. 2017;47:329-35.
  16. Li Q, Zhang S, Dai L, Li L-s. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society. 2012;134(46):18932-5.
  17. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Letters. 2012;12(2):844-9.
  18. Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, et al. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta. 2012;101:192-7.
  19. Ghasedi A, Koushki E, Baedi J. Cation–π aggregation-induced white emission of moisture-resistant carbon quantum dots: a comprehensive spectroscopic study. Physical Chemistry Chemical Physics. 2022;24(38):23802-16.
  20. Liu R, Wu D, Feng X, Müllen K. Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. Journal of the American Chemical Society. 2011;133(39):15221-3.
  21. Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chemical Communications. 2010;46(21):3681.
  22. Pan D, Zhang J, Li Z, Wu M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced Materials. 2010;22(6):734-8.
  23. Li L-L, Ji J, Fei R, Wang C-Z, Lu Q, Zhang J-R, et al. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials. 2012;22(14):2971-9.
  24. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, et al. Optically Tunable Amino-Functionalized Graphene Quantum Dots. Advanced Materials. 2012;24(39):5333-8.
  25. Fan Z, Li Y, Li X, Fan L, Zhou S, Fang D, et al. Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon. 2014;70:149-56.
  26. Yoon H, Chang YH, Song SH, Lee E-S, Jin SH, Park C, et al. Intrinsic Photoluminescence Emission from Subdomained Graphene Quantum Dots. Advanced Materials. 2016;28(26):5255-61.
  27. Sreeprasad TS, Berry V. How Do the Electrical Properties of Graphene Change with its Functionalization? Small. 2012;9(3):341-50.
  28. Tetsuka H, Nagoya A, Fukusumi T, Matsui T. Molecularly Designed, Nitrogen-Functionalized Graphene Quantum Dots for Optoelectronic Devices. Advanced Materials. 2016;28(23):4632-8.
  29. Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, et al. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Advances. 2013;3(34):14571.
  30. Sahebalzamani H, Mehrani K, Hosseini HRM, Zare K. Effect of Cysteine Substitutions on the Structural and Magnetic Properties of Fe3O4–Cysteine/RGO and Fe3O4/RGO–Cysteine Nanocomposites. Journal of Superconductivity and Novel Magnetism. 2018;32(5):1299-306.
  31. Ahmadi R, Gu N, Madaah Hosseini HR. Characterization of Cysteine Coated Magnetite Nanoparticles as MRI Contrast Agent. Nano-Micro Letters. 2012;4(3):180-3.
  32. Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki PR. Lead and Chromium Adsorption from Water using L-Cysteine Functionalized Magnetite (Fe(3)O(4)) Nanoparticles. Scientific reports. 2017;7(1):7672-.
  33. Zhao R, Xiang J, Wang B, Chen L, Tan S. Recent Advances in the Development of Noble Metal NPs for Cancer Therapy. Bioinorg Chem Appl. 2022;2022:2444516-.
  34. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738-43.
  35. Nazari N, Dehghani Mohammad Abadi M, Malek Khachatourian A, Golmohammad M, Nemati A. The effect of phosphorus and nitrogen dopants on structural, microstructural, and electrochemical characteristics of 3D reduced graphene oxide as an efficient supercapacitor electrode material. Diamond and Related Materials. 2023;137:110144.
  36. Tam TV, Hong SH, Choi WM. Facile synthesis of cysteine–functionalized graphene quantum dots for a fluorescence probe for mercury ions. RSC Advances. 2015;5(118):97598-603.
  37. Mondal MK, Mukherjee S, Joardar N, Roy D, Chowdhury P, Sinha Babu SP. Synthesis of smart graphene quantum dots: A benign biomaterial for prominent intracellular imaging and improvement of drug efficacy. Applied Surface Science. 2019;495:143562.
  38. Gan Z, Xu H, Hao Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale. 2016;8(15):7794-807.
  39. Jun SC. Fundamental of Graphene. Graphene-based Energy Devices: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 1-48.
  40. Abasali karaj abad Z, Nemati A, Malek Khachatourian A, Golmohammad M. Synthesis and characterization of rGO/Fe2O3 nanocomposite as an efficient supercapacitor electrode material. Journal of Materials Science: Materials in Electronics. 2020;31(17):14998-5005.
  41. Abdi Z, Malek Khachatourian A, Nemati A. Visible-light-driven photocatalytic activity of NiFe2O4@Ti-doped ZnO magnetically separable nanoparticles anchored on N-doped rGO nanosheets. Diamond and Related Materials. 2023;135:109839.