[1] Laleh, M., & Kargar, F. (2011). Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. Journal of alloys and compounds, 509(37), 9150-9156.
[2] Fouad, Y., & El Batanouny, M. (2011). Effect of surface treatment on wear behavior of magnesium alloy AZ31. Alexandria Engineering Journal, 50(1), 19-22.
[3] Xu, C., Sheng, G., Sun, Y., Yuan, X., & Jiao, Y. (2018). Microstructure and mechanical properties of high-energy shot-peened Mg/Ti weldments. Science and Technology of Welding and Joining, 23(1), 28-34
[4] Laleh, M. (2010). a. S. Rouhaghdam, T. Shahrabi, a. Shanghi, Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J. Alloys Compd, 496, 548-552.
[5] Xu, K., Wang, A., Wang, Y., Dong, X., Zhang, X., & Huang, Z. (2009). Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding. Applied surface science, 256(3), 619-626.
[6] Hwang, D. Y., Kim, Y. M., Park, D. Y., Yoo, B., & Shin, D. H. (2009). Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation. Electrochimica acta, 54(23), 5479-5485.
[7] Mueller, K., & Mueller, S. (2007). Severe plastic deformation of the magnesium alloy AZ31. Journal of Materials Processing Technology, 187, 775-779.
[8] Hassani-Gangaraj, S. M., Cho, K. S., Voigt, H. J., Guagliano, M., & Schuh, C. A. (2015). Experimental assessment and simulation of surface nanocrystallization by severe shot peening. Acta Materialia, 97, 105-115.
[9] Wang, Z. B., Tao, N. R., Tong, W. P., Lu, J., & Lu, K. (2003). Diffusion of chromium in nano-crystalline iron produced by means of surface mechanical attrition treatment. Acta Materialia, 51(14), 4319-4329.
[10] Tao, N. R., Wang, Z. B., Tong, W. P., Sui, M. L., Lu, J., & Lu, K. (2002). An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta materialia, 50(18), 4603-4616.
[11] Li, W., Liu, P., Ma, F., Liu, X., & Rong, Y. (2011). High-temperature surface alloying of nano-crystalline nickel produced by surface mechanical attrition treatment. Journal of alloys and compounds, 509(2), 518-522.
[12] Nazari, F., Honarpisheh, M., & Zhao, H. (2021). Effect of the uncertainty of multi-cut contour method and friction coefficient on residual stresses of constrained groove pressing process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(11), 2039-2052.
[13] Nazari, F., Honarpisheh, M., & Zhao, H. (2020). The effect of microstructure parameters on the residual stresses in the ultrafine-grained sheets. Micron, 132, 102843.
[14] Khanlari, H., & Honarpisheh, M. (2020). Investigation of microstructure, mechanical properties and residual stress in non-equal-channel angular pressing of 6061 aluminum alloy. Transactions of the Indian Institute of Metals, 73(5), 1109-1121.
[15] Moazam, M. A., & Honarpisheh, M. (2019). Ring-core integral method to measurement residual stress distribution of Al-7075 alloy processed by cyclic close die forging. Materials Research Express, 6(8), 0865j3.
[16] Moazam, M. A., & Honarpisheh, M. (2021). Improving the mechanical properties and reducing the residual stresses of AA7075 by combination of cyclic close die forging and precipitation hardening. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(3), 542-549.
[17] Moazam, M. A., & Honarpisheh, M. (2020). The effects of combined cyclic close die forging and aging process on microstructure and mechanical properties of AA7075. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(9), 1242-1251.
[18] Honarpisheh, M., Haghighat, E., & Kotobi, M. (2018). Investigation of residual stress and mechanical properties of equal channel angular rolled St12 strips. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(10), 841-851.
[19] Ke, L. U., & Jian, L. U. (1999). Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. Journal of Materials Science and Technology, 15(3), 193-197.
[20] Lu, K. A. L. J., & Lu, J. (2004). Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering: A, 375, 38-45.
[21] Samih, Y., Beausir, B., Bolle, B., & Grosdidier, T. (2013). In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT). Materials characterization, 83, 129-138.
[22] Wua, X., Jianga, P., Chena, L., Yuana, F., & Zhub, Y. T. (2014). Extraordinary strain hardening by gradient structure. PNAS, 111(20), 7197-7201.
[23] Xu, J. M., Liu, Y., Jin, B., Li, J. X., Zhai, S. M., Yang, X. J., & Lu, J. (2015). Thermal stability of nano-crystalline AZ31 magnesium alloy fabricated by surface mechanical attrition treatment. Acta Metallurgica Sinica (English Letters), 28(9), 1162-1169.
[24] Liu, X. C., Zhang, H. W., & Lu, K. (2013). Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science, 342(6156), 337-340.
[25] Lu, K. (2014). Making strong nanomaterials ductile with gradients. Science, 345(6203), 1455-1456.
[26] Lu, K. A. L. J., & Lu, J. (2004). Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering: A, 375, 38-45.
[27] Hu, Tao, C. S. Wen, G. Y. Sun, S. L. Wu, C. L. Chu, Z. W. Wu, G. Y. Li, J. Lu, K. W. K. Yeung, and Paul K. Chu (2010). Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surface and coatings technology, 205(2), 506-510.
[28] Meng, X., Duan, M., Luo, L., Zhan, D., Jin, B., Jin, Y., & Lu, J. (2017). The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment. Materials Science and Engineering: A, 707, 636-646.
[29] Sun, H. Q., Shi, Y. N., & Zhang, M. X. (2008). Wear behavior of AZ91D magnesium alloy with a nano-crystalline surface layer. Surface and Coatings Technology, 202(13), 2859-2864.
[30] Jiang, P., Lu, J., & Wu, X. L. (2011). Microstructure evolution and tensile properties of 304l stainless steel subjected to surface mechanical attrition treatment. In Materials Science Forum (Vol. 667, pp. 175-179). Trans Tech Publications Ltd.
[31] Zhang, H. W., Hei, Z. K., Liu, G., Lu, J., & Lu, K. (2003). Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta materialia, 51(7), 1871-1881.
[32] Lu, S., Wang, Z., & Lu, K. (2010). Strain-induced microstructure refinement in a tool steel subjected to surface mechanical attrition treatment. Journal of Materials Science & Technology, 26(3), 258-263.
[33] Sun, Y. (2013). Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel. Tribology International, 57, 67-75.
[34] Wang, K., Tao, N. R., Liu, G., Lu, J., & Lu, K. (2006). Plastic strain-induced grain refinement at the nanometer scale in copper. Acta materialia, 54(19), 5281-5291.
[35] Zhu, K. Y., Vassel, A., Brisset, F., Lu, K., & Lu, J. (2004). Nanostructure formation mechanism of α-titanium using SMAT. Acta materialia, 52(14), 4101-4110.
[36] Haghighi, O., Amini, K., & Gharavi, F. (2020). Effect of Shot Peening Operation on the Microstructure and Wear Behavior of AZ31 Magnesium Alloy. Protection of Metals and Physical Chemistry of Surfaces, 56(1), 164-168.
[37] Balusamy, T., Narayanan, T. S., & Ravichandran, K. (2012). Effect of surface mechanical attrition treatment (SMAT) on boronizing of EN8 steel. Surface and Coatings Technology, 213, 221-228.
[38] Bagherifard, S., Hickey, D. J., Fintová, S., Pastorek, F., Fernandez-Pariente, I., Bandini, M., ... & Guagliano, M. (2018). Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Acta biomaterialia, 66, 93-108.