Friction Stir Welding/Processing of Aluminum Alloys with and without Adding Nanoparticles: A Review on the Microstructure, Texture, and Hardness

Document Type : Research Paper


1 Department of Nano Technology, Nano-Materials Science and Engineering Group, Semnan University, Semnan, Iran

2 Faculty of materials & metallurgical engineering, Semnan University, Semnan, Iran



Friction stir processing (FSP) and friction stir welding (FSW) methods are two types of severe plastic deformation (SPD) processes. SPD methods are useful in producing nanoparticle or ultrafine-grained materials (UFG) microstructure. In FSP and FSW, a rotating cylinder tool (pin), which could take the form of various geometries, pierces into the workpiece with a particular angle and depth. Furthermore, it refines grains by moving in the direction of interest along with the tool's movements. The uniform distribution of nanoparticles in the stir zone is one of the main challenges of using nanoparticles. Controlling variables such as tool rotational speed, tool travel speed, number of passes, etc., the distribution of nanoparticles and the grain size can be changed in the stir zone. Microstructure, texture, and grain size directly affect the hardness of the stir zone. Recent studies have shown that using nanoparticles enhances the mechanical properties of the stir zone. The main aim of this review article is to collect the results of previous articles focused on analyzing the operation of FSW and FSP, the microstructure of the stir zone in FSW and FSP, the impact of effective parameters on the microstructure after adding nanoparticles to the stir zone, and the applications of FSW and FSP in various industries. Moreover, the fundamental mechanisms of grain refinement throughout FSW and FSP, including morphology and grain boundaries forming, were discussed.


  1. [1]                  M. Naseri, M. Reihanian, and E. Borhani, “Effect of strain path on microstructure, deformation texture and mechanical properties of nano.ultrafine grained AA1050 processed by accumulative roll bonding (ARB),” Mater Sci & Eng A, 2016; 673, 288–298. doi: 10.1016.j.msea.2016.07.031.  

    [2]                  B. Azada and E. Borhanib, “A study on the effect of Nano-Precipitates on fracture behavior of nano-structured Al-2wt%cu alloy fabricated by accumulative roll bonding (ARB) process,” J Min & Metallurgy, Sec B: Metallurgy, 2016; 52 (1). doi: 10.2298.JMMB140829028A.

     [3]                 P. Afzali, M. Yousefpour, and E. Borhani, “Evaluation of the effect of aging heat treatment on corrosion resistance of Al-Ag alloy using electrochemical methods,” J of Mater Rsrch, 2016; 31 (16), 2457–2464. doi: 10.1557.jmr.2016.218.

    [4]                  A. L. Pilchak and J. C. Williams, “Microstructure and texture evolution during friction stir processing of fully lamellar Ti-6Al-4V,” in Metallurgical and Mater Transactions A: Physical Metallurgy & Mater Science, 2011; 42 (3), doi: 10.1007.s11661-010-0434-9.

     [5]                 K. Vasu, H. Chelladurai, A. Ramaswamy, S. Malarvizhi, and V. Balasubramanian, “Effect of fusion welding processes on tensile properties of armor grade, high thickness, non-heat treatable aluminum alloy joints,” Defence Technology, 2019; 15 (3),353–362. doi: 10.1016.j.dt.2018.11.004.

     [6]                 R.S. Mishra, Murray W. Mahoney, “Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys,” Mater Sci Forum, 2001; 357(3),504-514.

     [7]                 W. M. Thomas and E. D. Nicholas, “Friction stir welding for the transportation industries,” Mater & Dsgn, 1997; 18 (4–6), 269–273. doi: 10.1016.s0261-3069(97)00062-9.

    [8]                  Ebrahimi, Gholamreza and Zarei Hanzaki, Abbas and Khodam, Shahin and Abdul Hosseini, Ahmed,” The effect Investigating of the secondary phase on hot deformation behavior of 2024 aluminum alloy,” Tehran, The 5th National Conference on Construction and Production Engineering, 2002.

    [9]       M. Sarkari Khorrami, N. Saito, Y. Miyashita, M. Kondod,” Texture variations and mechanical properties of aluminum during severe plastic deformation and friction stir processing with SiC nanoparticles,” Materials Science & Engineering A, 2019; 744, 349-364.

    [10]     K. Elangovan, V. Balasubramanian, “Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminum alloy,” Journal of Materials Processing Technology, 2008; 200(1–3),163-175.

    [11]         R. Vatankhah Barenji, V. M Khojastehnezhad, H. H Pourasl, A. Rabiezadeh,“ Wear properties of Al–Al2O3.TiB2 surface hybrid composite layer prepared by friction stir process,” Journal of Composite Materials, 2015; 50(11), 1457-1466.

    [12]    L. Ceschini, Boromei, G. Minak, A. Morri, F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005.10 vol.%Al2O3p composite,” Composites Science and Technology, 2007; 67(3–4),  605-615.

    [13]     K. J. Al-Fadhalah, A. I. Almazrouee, A. S. Aloraier,“ Microstructure and mechanical properties of multipass friction stir processed aluminum alloy 6063,” Materials &Design, 2014; 53, 550-560.

    [14]         A. Scialpi, L. A. C. De Filippis, P. Cavaliere, “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082aluminium alloy,” Materials & Design, 2007; 28( 4), 1124-1129.

    [15]               A. Lalpour, A. Soltani Pour, YKh. Farmanesh, “Effect of Chilled FSP on the Microstructure and Mechanical Properties of 7075 Aluminum Alloy,” Iran, Sci and surface engineering, 2015;12 (28),37-27.

    [16]               J. S. Jesus, J. M. Costa, A. Loureiro, and J. M. Ferreira, “Assessment of friction stir welding aluminum T-joints,” Journal of Materials Processing Technology, 2018; 255,387–399. doi: 10.1016.j.jmatprotec.2017.12.036.

    [17]               O. Heidary, O. Mirzaee, A. Honarbakhsh Raouf, and E. Borhani, “Texture development during the austempering process of an AISI 4130 steel,” Mater Sci and Eng A, 2020;793 (139751). doi: 10.1016.j.msea.2020.139751.

    [18]               A. Els-Botes, D. G. Hattingh, and K. V. Mjali, “The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional friction stir welding 6082-T6 aluminum joints,” in WIT Transactions on Eng Scis, 2009; 62. doi: 10.2495.SECM090171.

    [19]               A. Rabiezadeh, A. Afsari, “Effect of nanoparticles addition on dissimilar joining of aluminum alloys by friction stir welding,” Journal of Welding Science and Technology of Iran,209,4,23-34.

    [20]               Y. S. Sato, H. Yamanoi, H. Kokawa, and T. Furuhara, “Microstructural evolution of ultrahigh carbon steel during friction stir welding,” Scripta Materialia, 2007; 57 (6), 557–560. doi: 10.1016.j.scriptamat.2007.04.050.

    [21]               V. Kishan and A. Devaraju, “Preparation of nano surface layer composite (TiB2)p on 6061-T6 Aluminum Alloy via Friction Stir Processing,” Materials Today: Proceedings, 2017; 4( 2), 4065–4069. doi: 10.1016.j.matpr.2017.02.309.

    [22]               A. Heidarpour, S. Ahmadifard, and S. Kazemi, “Fabrication and Characterization of Al5083. Al 2 O 3 Surface Nanocomposite via Friction Stir Processing,” J of Advc Mater & Proc, 2017; 5 (2), 11–24.

    [23]               M. Alvand, M. Naseri, E. Borhani, and H. Abdollah-Pour, “Microstructure and crystallographic texture characterization of friction stir welded thin AA2024 aluminum alloy,” Iranian J of Mater Sci and Eng, 2018; 15 (1), 53–63. doi: 10.22068.ijmse.15.1.53.

    [24]               X. Liu, R. Jia, H. Zhang, W. Cheng, and X. Zhai, “Ebsd characterization of the microstructure of 7A52 aluminum alloy joints welded by friction stir welding,” Mater, 2021;14(21),1–11. doi: 10.3390.ma14216362.

    [25]               F. J. Humphreys, M. Hatherly, “Recrystallization and Related Annealing Phenomena,” Elsevier, 2004; 2nd ed.

    [26]               M. Sarkari Khorrami, M. Kazeminezhad, Y. Miyashita, and A. H. Kokabi, “The Correlation of Stir Zone Texture Development with Base Metal Texture and Tool-Induced Deformation in Friction Stir Processing of Severely Deformed Aluminum,”  Physical Metallurgy and Mater Sci,2017; 48(1), 188–197.

    [27]               T. R. McNelley, S. Swaminathan, and J. Q. Su, “Recrystallization mechanisms during friction stir welding. processing of aluminum alloys” Scripta Materialia, 2008; 58(5),349–354.doi: 10.1016.j.scriptamat.2007.09.064.

    [28]               Z. Savaedi, R. MotallebiH. Mirzadeh, “A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys,” Journal of Alloys and Compounds,2022; 903, 163964.

    [29]               Mohammad Nazari, Mohammad Kazem Besharati Givi, Mohammad Reza Farahani, Javad Mollaei Milani, Hassan Mohammad Zadeh, “Investigation on the effects of using Nano-size Al2O3 powder on the mechanical and microstructural in the multi-passes continuous friction stir welding of the 2024-T6,” ModaresMechanicalEngineering,2015;14(12),85-90.

    [30]               Y. Mazaheri, A. Heidarpour, M. M. Jalilvand, and M. Roknian, “Effect of Friction Stir Processing on the Microhardness, Wear and Corrosion Behavior of Al6061 and Al6061.SiO2 Nanocomposites,” Journal of Materials Engineering and Performance, 2019; 28(8), 4826–4837. doi: 10.1007.s11665-019-04260-3.

    [31]               T. Singh, S. K. Tiwari,  D. K. Shukla, “Friction-stir welding of AA6061-T6: The effects of Al2O3 nano-particles addition,” Results in Mater, 2019;  1. doi: 10.1016.j.rinma.2019.100005.

    [32]               LiqiangWang, LechunXie, PinquanShen, QingFan, WenWang, KuaisheWang, WeijieLu, LinHua, and Lai-ChangZhang, “Surface microstructure and mechanical properties of Ti-6Al-4V.Ag nanocomposite prepared by FSP,” Mater Characterization, 2019;153,175–183. doi: 10.1016.j.matchar.2019.05.002.

    [33]               P. Avinash, M. Manikandan, N. Arivazhagan, R. K. Devendranath, and S. Narayanan, “Friction stir welded butt joints of AA2024 T3 and AA7075 T6 aluminum alloys,” in Procedia Engineering, 2014; 75,  98–102. doi: 10.1016.j.proeng.2013.11.020.

    [34]               M. Yousefieh, M. Tamizifar, S. M. A. Boutorabi, and E. Borhani, “An investigation on the microstructure, texture and mechanical properties of an optimized friction stir-welded ultrafine-grained Al–0.2 wt% Sc alloy deformed by accumulative roll bonding,” J of Mater Sci, 2018; 53(6). doi: 10.1007.s10853-017-1897-5.

    [35]               S. Gholami, E. Emadoddin, M. Tajally, and E. Borhani, “Friction stir processing of 7075 Al alloy and subsequent aging treatment,” Transactions of Nonferrous Metals Society of China (English Edition), 2015; 25(9). doi: 10.1016.S1003-6326(15)63910-3.

    [36]               N. A. Patil, S. R. Pedapati, O. Mamat, and A. M. H. S. Lubis, “Morphological characterization, statistical modeling and wear behavior of AA7075-Titanium Carbide-Graphite surface composites via Friction stir processing,” Journal of Materials Research and Technology, 2021; 11. doi: 10.1016.j.jmrt.2021.02.054.

    [37]               M. Naseri, M. Reihanian, and E. Borhani, “EBSD characterization of nano.ultrafine structured Al.Brass composite produced by severe plastic deformation,” J of Ultrafine Grained and Nanostructured  Mater, 2018; 51 (2), 123–138. doi: 10.22059.JUFGNSM.2018.02.04.

    1. V. Mathur, S. R Prabhu B, M. Patel G. C. & A. K. Shettigar, “Reinforcement of titanium dioxide nanoparticles in aluminum alloy AA 5052 through friction stir process,” Advances in Materials and Processing Technologies, 2019; 5( 2), 329–337. doi: 10.1080.2374068X.2019.1585072.
    2. E. B. Moustafa, W. S. Abushanab, A. Melaibari, A. V. Mikhaylovskaya, M. S. Abdel-Wahab, and A. O. Mosleh, “Nano-surface composite coating reinforced by Ta2 C, Al2 O3 and MWCNTs nanoparticles for aluminum base via FSP,” Coatings, 2021; 11(12). doi: 10.3390.coatings11121496.
    3. F. Ostovan, S. Amanollah, M. Toozandehjani, and E. Shafiei, “Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing,” J of Composite Mater, 2020; 54(8), 1107–1117. doi: 10.1177.0021998319874849.
    4. M. Yousefieh, M. Tamizifar, S. M. A. Boutorabi, and E. Borhani, “Optimization of friction stir welding parameters for mechanical properties of Nano.UFG Aluminum- scandium alloys by using design of experiment method," JWSTI, 2018; 3(2),79-89.
    5. S. S. M. Mehrian, M. Rahsepar, F. Khodabakhshi, and A. P. Gerlich, “Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy,” Surface and Coatings Technology, 2021; 405. doi: 10.1016.j.surfcoat.2020.126647.
    6. M. Alvand, H. Abdollah-Pour, E. Borhani, and M. Naseri “Effect of rotational and welding speeds on microstructure and mechanical properties of friction stir welded AA2024 aluminum sheets.”8th Congress & 3rd International Eng Mater & Metallurgy, 2014; 18-19.
    7. M. Fekri Soostani, R. Taghiabadi, M. Jafarzadegan “Improving the mechanical properties of Al-Ni-Fe alloys through friction stir processing,” MetallurgicalEngineering,2017; 20(2), 121-131. doi:
    8. B. Rahmatian, K. Dehghani, and S. E. Mirsalehi, “Effect of adding SiC nanoparticles to nugget zone of thick AA5083 aluminum alloy joined by double-sided friction stir welding,” J of Manufacturing Processes, 2020; 52(2019), 152–164. doi: 10.1016.j.jmapro.2020.01.046.
    9. L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro, and L. M. Volpone, “Friction stir welding of an AA6061.Al2O3.20p reinforced alloy,” Composites Science and Technology, 2006; 66(2). doi: 10.1016.j.compscitech.2005.04.048.
    11. M. Ghaffarpour, B. M. Dariani, A. Hossein Kokabi, and N. A. Razani, “Friction stir welding parameters optimization of heterogeneous tailored welded blank sheets of aluminum alloys 6061 and 5083 using response surface methodology,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, no. 12, 2012, doi: 10.1177.0954405412461864.
    12. M. Ghosh, R. K. Gupta, and M. M. Husain, “Friction stir welding of stainless steel to al alloy: Effect of thermal condition on weld nugget microstructure,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 45, no. 2, 2014, doi: 10.1007.s11661-013-2036-9.
    13. S. Balos, D. L. Zlatanovic, P. Janjatovic, M. Dramicanin, D. Rajnovic, and L. Sidjanin, “Wear Resistance Increase by Friction Stir Processing for Partial Magnesium Replacement in Aluminium Alloys,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 329, no. 1, doi: 10.1088.1757-899X.329.1.012017.
    14. R. Butola, L. Tyagi, R. M. Singari, Q. Murtaza, H. Kumar, and D. Nayak, “Mechanical and wear performance of Al.SiC surface composite prepared through friction stir processing,” Materials Research Express, vol. 8, no. 1, 2021, doi: 10.1088.2053-1591.abd89d.
    15. R. W. Armstrong, “Hall-Petch Relationship : Use in Characterizing Properties of Aluminum and Aluminum Alloys*," Materials Science, 2016; Corpus ID: 37797939.
    16. M. Khoobroo, A. Maleki, B. Niroumand, “Improving the Surface Properties of Gray Cast Iron through In-Situ Alloying,” Journal of Advanced Materials in Engineering, 2017; 36 ( 3), 1–10. DOI:10.29252.JAME.36.3.1,Corpus ID: 139113259.
    17. M. M. El Rayes, M. S. Soliman, A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, and M. M. Abdel-Mawla, “Effect of Feed Rate in friction stir welding on the Mechanical and Microstructural Properties of AA5754 Joints,” Advances in Mater Sci and Eng, 2019; (12). doi: 10.1155.2019.4156176.
    18. Sen Lin, Jianguo Tang, Shengdan Liu, Yunlai Deng, Huaqiang Lin, Hua Ji, Lingying Ye, Xinming Zhang, “Effect of travel speed on microstructure and mechanical properties of FSW joints for Al-Zn-Mg alloy,” Materials, 2019; 12( 24).
    19. J. J. Shen, H. J. Liu, and F. Cui, “Effect of welding speed on microstructure and mechanical properties of friction stir welded copper,” Mater and Design, 2010; 31(8),3937–3942. doi: 10.1016.j.matdes.2010.03.027.
    20. S. Yahya Abadi, M. Abbasi, “Modification of Mechanical Properties of Al6061 Aluminum Alloy Joint Formed Using Friction Stir Welding by Increasing the Cooling Rate and Application of Vibration,”   Modares Mechanical Engineering, 2019, 19(6), 1551-1558.
    21. D. Kocańda, A. Górka, and D. Zasada, “Formation of a Metal Coating by Means of Friction Stir Processing,” ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives,2011.
    22. M. Yousefieh, A. Jabbari, “Modeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation, and multiple linear regression,” JWSTI, 2020; 6 (2),65-76.
    23. G. Buffa, G. Campanile, L. Fratini, and A. Prisco, “Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties,” Materials Science and Engineering A, 2009; 519( 1–2), 19–26. doi: 10.1016.j.msea.2009.04.046.
    24. L. N. Tufaro, I. Manzoni, and H. G. Svoboda, “Effect of Heat Input on AA5052 Friction Stir Welds Characteristics,” Procedia Mater Sci, 2015; 8, 914–923. doi: 10.1016.j.mspro.2015.04.152.
    25. M. Aissani, S. Gachi, F. Boubenider, and Y. Benkedda, “Design and optimization of friction stir welding tool,” Mater and Manufacturing Processes, 2010; 25(11). doi: 10.1080.10426910903536733.
    26. John Baruch L, R. Raju, and V. Balasubramanian, “Effect of Tool Pin Profile on Microstructure and Hardness of Friction Stir Processed Aluminum Die Casting Alloy Study,” European Journal of Scientific Research, 2012;70(3),375-385.
    27. P. Sadeesh, M.VenkateshKannan, V.Rajkumar, P.Avinash, N.Arivazhagan, K.Devendranath Ramkumar, S.Narayanan, “Studies on friction stir welding of aa 2024 and aa 6061 dissimilar metals,” in Procedia Engineering, 2014; 75. doi: 10.1016.j.proeng.2013.11.031.
    28. S. Emamian, M. Awang, P. Hussai, B. Meyghani, and A. Zafar, “Influences of tool pin profile on the friction stir welding of AA6061,” ARPN J of Eng and Applied Scis, 2016; 11( 20).
    29. K. Ullegaddi, V. Murthy, R. N. Harsha, and Manjunatha, “Friction Stir Welding Tool Design and Their Effect on Welding of AA-6082 T6,” Mater Today: Proceedings, 2017; 4(8). doi: 10.1016.j.matpr.2017.07.133.
    30. N. Z. Khan, A. N. Siddiquee, and Z. A. Khan, “Proposing a new relation for selecting tool pin length in friction stir welding process,” Journal of the International Measurement Confederation, 2018; 129, 112–118. doi: 10.1016.j.measurement.
    31. V. Msomi and S. Mabuwa, Analysis of material positioning towards microstructure of the friction stir processed AA1050.AA6082 dissimilar joint,” Advances in Industrial and Manufacturing Eng, 2020; 1. doi: 10.1016.j.aime.2020.100002.
    32. K. S. Wang, W. Guo, W. Wang, and W. L. Wang, “Effect of accumulation of friction stir processing on microstructure and properties of cast pure aluminum L2,” Hangkong Cailiao Xuebao.Journal of Aeronautical Materials, 2009; 29(5), 29–32.
    33. W. Wang, K. Wang, Q. Guo, and N. Wu, “Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy,” Xiyou Jinshu Cailiao Yu Gongcheng.Rare Metal Materials and Engineering,2012; 41(9), 1522–1526. doi: 10.1016.s1875-5372(13)60004-1.
    34. S. Mabuwa, V. Msomi, “The effect of friction stir processing on the friction stir welded AA1050-H14 and AA6082-T6 joints,” in Materials Today: Proceedings, 2019; 26. doi: 10.1016.j.matpr.2019.10.039.
    35. D. A. Dragatogiannis, E. P. Koumoulos, I. A. Kartsonakis, D. I. Pantelis, P. N. Karakizis, and C. A. Charitidis, “Dissimilar Friction Stir Welding Between 5083 and 6082 Al Alloys Reinforced With TiC Nanoparticles,” Materials and Manufacturing Processes, 2016; 31(16),2101–2114. doi: 10.1080.10426914.2015.1103856.
    36. H. C. Madhu, P. Ajay Kumar, C. S. Perugu, and S. V. Kailas, “Microstructure and Mechanical Properties of Friction Stir Process Derived Al-TiO2 Nanocomposite,” Journal of Materials Engineering and Performance, 2018; 27( 3), 1318–1326.doi: 10.1007.s11665-018-3188-y.
    37. E. Moustafa, “Effect of multi-pass friction stir processing on mechanical properties for AA2024.Al2O3 nanocomposites,” Materials, 2017; 10( 9). doi: 10.3390.ma10091053.
    38. T. Singh, S. K. Tiwari, and D. K. Shukla, “Effects of Al2O3 nanoparticles volume fractions on microstructural and mechanical characteristics of friction stir welded nanocomposites,” Nanocomposites,2020; 6( 2), 76–84. doi: 10.1080.20550324.2020.1776504.
    39. S. E.Rashed, H. A.Hassan, T. G.Abu-El-Yazied, A. B. El-Shabasy, “SURFACE IMPROVEMENT OF 7075 ALLOY USING FRICTION STIR,” JOURNAL  OF THE EGYPTIAN SOCIETY OF TRIBOLOGY, 2020; 17(2),1–12.
    40. T. Shinoda, M. Kawai, H. Takegami, “NOVEL PROCESS OF SURFACE MODIFICATION OF ALUMINIUM CASTS APPLYING FRICTION STIR PHENOMENON,” Materials Science,2005; DOI:10.1007.BF03266469, Corpus ID: 137169086
    41. H. Uzun, “Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite,” Materials and Design, 2007; 28( 5).doi: 10.1016.j.matdes.2006.03.023.
    42. R. Bauri, D. Yadav, and G. Suhas, “Effect of friction stir processing (FSP) on microstructure and properties of Al-TiC in situ composite,” Materials Science and Engineering A, 2011; 528(13–140). doi: 10.1016.j.msea.2011.02.085.
    43. Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, “Effect of friction stir processing with B4C particles on the microstructure and mechanical properties of 6061 aluminum alloy,” International Journal of Advanced Manufacturing Technology, 2015; 78, (9–12). doi: 10.1007.s00170-014-6748-9.
    44. M. Farahmand Nikoo, H. Azizi, N. Parvin, and H. Yousefpour Naghibi, “The influence of heat treatment on microstructure and wear properties of friction stir welded AA6061-T6.Al2O3 nanocomposite joint at four different traveling speed,” Journal of Manufacturing Processes, 2016; 22, 90–98.doi: 10.1016.j.jmapro.2016.01.003.
    45. M. Sarkari Khorrami,” Friction stir welding of ultrafine grained aluminum alloys: a review”, Journal of Ultrafine Grained and Nanostructured Materials, 2021; 54(1), 1-20. doi: 10.22059.jufgnsm.2021.01.01
    46. Z. Sajuri et al., “Cold-rolling strain hardening effect on the microstructure, serration-flow behaviour and dislocation density of friction stir welded AA5083,” Metals, 2020; 10(1). doi: 10.3390.met10010070.



    1. H. Mehdi , R. S. Mishra, “Effect of Friction Stir Processing on Microstructure and Mechanical Properties of TIG Welded Joint of AA6061 and AA7075,” Defence Technology, 2021;17,715-727. doi: 10.1016.j.dt.2020.04.014.


    1. C. Huang et al., “Modification of a cold sprayed SiCp.Al5056 composite coating by friction stir processing,” Surface and Coatings Technology, 2016; 296(69–75).doi: 10.1016.j.surfcoat.2016.04.016.


    1. S. Mohammed and A. K. Birru, “Friction Stir Welding of AA6082 Thin Aluminium Alloy Reinforced with Al2O3 Nanoparticles,” Transactions of the Indian Ceramic Society, 2019; 78(3),137–145. doi: 10.1080.0371750X.2019.1635046.


    1. M. Tabasi, M. Farahani, M. K. B. Givi, M. Farzami, and A. Moharami, “Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles,” International J of Advanced Manufacturing Technology, 2016; 86(1–4), 705–715. doi: 10.1007.s00170-015-8211-y.


    1. B. Wang, B. B. Lei, J. X. Zhu, Q. Feng, L. Wang, and D. Wu, “EBSD study on microstructure and texture of friction stir welded AA5052-O and AA6061-T6 dissimilar joint,” Mater and Design, 2015; 87, 593–599. doi: 10.1016.j.matdes.2015.08.060.


    1. R. Motallebi, Z. SavaediH. Mirzadeh, “Superplasticity of high-entropy alloys: a review”,  Archives of Civil and Mechanical Engineering, 2022; 22.


    1. H. Mirzadeh, “ High strain rate superplasticity via friction stir processing (FSP): A review“, Materials Science & Engineering A, 2021; 819, 141499. doi:10.1016.j.msea.2021.141499.


    1. S. Mohammed and A. K. Birru, “Friction Stir Welding of AA6082 Thin Aluminium Alloy Reinforced with Al2O3 Nanoparticles,” Transactions of the Indian Ceramic Society, 2019; 78(3),137–145. doi: 10.1080.0371750X.2019.1635046.