Hybrid Templating Approach for the Synthesis of Hierarchical Oxides: Titania Heterojunctions for Photodegradation of Organic Dyes

Document Type : Research Paper


1 Department of Materials Science and Metallurgy, Shahid Bahonar University of Kerman, Kerman, Iran

2 Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

3 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran



Hierarchical titania with anatase/rutile crystalline phases were obtained by a hybrid hard/soft templating approach. Three sets of conditions were chosen including absolute ethanol, ethanol: water and absolute ethanol with the addition of microcrystalline cellulose as a hard template; in all of the experiments P123 three block co-polymer was utilized as the soft template. Crystallite sizes, porosity and surface acidity were found to change drastically by modifying the initial synthesis conditions. The obtained samples were characterized using powder XRD, FESEM, SEM, TEM, DRS, EDS, N2-physisorption, DLS and zeta potential meter. Methyl violet, methyl orange and malachite green were chosen as representative organic pollutants with different chemistries and a series of experiments were performed under a high-pressure mercury lamp equipped with UV filter. It was found that the hierarchical titania sample works best to remove methyl violet from aqueous media while simpler nanostructures obtained with soft templating work better for methyl orange and malachite green. Based on the characterization results, possible enhancement mechanisms were proposed to explain the drastic differences between the performance of different samples for removing different organic dyes.


  1. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General. 2009;359(1-2):25-40.
  2. Allen SJ, Koumanova B. Decolourisation of water/wastewater using adsorption. Journal of the university of chemical technology and metallurgy. 2005 Jul;40(3):175-92.
  3. Aplin R, Waite TD. Comparison of three advanced oxidation processes for degradation of textile dyes. Water Science and Technology. 2000;42(5-6):345-54.
  4. Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal. 2009;151(1-3):10-8.
  5. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000;1(1):1-21.
  6. Daghrir R, Drogui P, Robert D. Modified TiO2 For Environmental Photocatalytic Applications: A Review. Industrial & Engineering Chemistry Research. 2013;52(10):3581-99.
  7. Zhang J, Zhou P, Liu J, Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics. 2014;16(38):20382-6.
  8. Akpan UG, Hameed BH. The advancements in sol–gel method of doped-TiO2 photocatalysts. Applied Catalysis A: General. 2010;375(1):1-11.
  9. Antonelli DM, Ying JY. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method. Angewandte Chemie International Edition in English. 1995;34(18):2014-7.
  10. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental. 2007;69(3-4):138-44.
  11. Chen D, Cao L, Huang F, Imperia P, Cheng Y-B, Caruso RA. Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14−23 nm). Journal of the American Chemical Society. 2010;132(12):4438-44.
  12. Siti Aida I, Srimala S. Effect of pH on TiO2 nanoparticles via sol gel method.
  13. Tsega M, Dejene FB. Influence of acidic pH on the formulation of TiO(2) nanocrystalline powders with enhanced photoluminescence property. Heliyon. 2017;3(2):e00246-e.
  14. Xu H, SoNo Z, XUDoNo WA, HAo WA. Synthesis of Well-Dispersed TiO Nanoparticles by a Sol-Hydrothermal Methodi. Asian Journal of Chemistry. 2011 May 1;23(5):2339-42.
  15. Sharma R, Sarkar A, Jha R, Kumar Sharma A, Sharma D. Sol‐gel–mediated synthesis of TiO2 nanocrystals: Structural, optical, and electrochemical properties. International Journal of Applied Ceramic Technology. 2020;17(3):1400-9.
  16. Lutterotti L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010;268(3-4):334-40.
  17. Lutterotti L. Maud: a Rietveld analysis program designed for the internet and experiment integration. Acta Crystallographica Section A Foundations of Crystallography. 2000;56(s1):s54-s.
  18. Lutterotti L, Matthies S, Wenk HR, Schultz AS, Richardson JW. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Physics. 1997;81(2):594-600.
  19. Sugimoto T, Zhou X. Synthesis of Uniform Anatase TiO2 Nanoparticles by the Gel–Sol Method. Journal of Colloid and Interface Science. 2002;252(2):347-53.
  20. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19(14):145605.
  21. Scherrer, P., Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1918. 2: p. 98-100.
  22. Khayati GR, Janghorban K. The nanostructure evolution of Ag powder synthesized by high energy ball milling. Advanced Powder Technology. 2012;23(3):393-7.
  23. Kubelka P. Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of paint). Zeitschrift fur technische Physik. 1931;12:593-601.
  24. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 2015;87(9-10):1051-69.
  25. Paola AD, Ikeda S, Marcì G, Ohtani B, Palmisano L. Transition metal doped: physical properties and photocatalytic behaviour. International Journal of Photoenergy. 2001;3(4):171-6.
  26. Kosmulski M. The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science. 2002;99(3):255-64.
  27. Swan NB, Zaini MAA. Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook. Ecological Chemistry and Engineering S. 2019;26(1):119-32.
  28. Adams EQ, Rosenstein L. THE COLOR AND IONIZATION OF CRYSTAL-VIOLET. Journal of the American Chemical Society. 1914;36(7):1452-73.
  29. de Oliveira HP. Determination of pKa of dyes by electrical impedance spectroscopy. Microchemical Journal. 2008;88(1):32-7.
  30. Asiltürk M, Sayılkan F, Arpaç E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. Journal of Photochemistry and Photobiology A: Chemistry. 2009;203(1):64-71.
  31. Abd-Rabboh HSM, Benaissa M, Ahmed MA, Fawy KF, Hamdy MS. Facile synthesis of spherical Au/TiO2 nanoparticles by sol-gel method using Tween 80 for photocatalytic decolourization of Malachite Green dye. Materials Research Express. 2018;6(2):025028.
  32. Pirsaheb M, Shahmoradi B, Khosravi T, Karimi K, Zandsalimi Y. Solar degradation of malachite green using nickel-doped TiO2 nanocatalysts. Desalination and Water Treatment. 2016;57(21):9881-8.
  33. Kamble RJ, Gaikwad PV, Garadkar KM, Sabale SR, Puri VR, Mahajan SS. Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles. Journal of the Iranian Chemical Society. 2022;19(1):303-12.
  34. Chen C, Lu C, Chung Y, Jan J. UV light induced photodegradation of malachite green on TiO2 nanoparticles. Journal of Hazardous Materials. 2007;141(3):520-8.
  35. Prado AGS, Costa LL. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes. Journal of Hazardous Materials. 2009;169(1-3):297-301.
  36. Yang H, Zhang K, Shi R, Li X, Dong X, Yu Y. Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. Journal of Alloys and Compounds. 2006;413(1-2):302-6.
  37. Li Y, Li X, Li J, Yin J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research. 2006;40(6):1119-26.
  38. Gupta AK, Pal A, Sahoo C. Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2. Dyes and Pigments. 2006;69(3):224-32.
  39. Saeed K, Khan I, Gul T, Sadiq M. Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. Applied Water Science. 2017;7(7):3841-8.


Volume 55, Issue 2
December 2022
Pages 200-210
  • Receive Date: 12 December 2021
  • Revise Date: 31 January 2022
  • Accept Date: 08 February 2022
  • First Publish Date: 01 December 2022