Thermal stability, corrosion resistance and nano-indentation behavior of Ni60Nb40-XZrX (X= 0, 20, 40) amorphous alloys

Document Type : Research Paper

Authors

1 Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran

2 Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran; Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

In this research, thermal stability, corrosion performance, hardness (H), and Young modulus (E) of Ni60Nb40, Ni60Nb20Zr20, and Ni60Zr40 amorphous ribbons were evaluated during the differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests, and nanoindentation technique, respectively. Results showed that the onset crystallization temperatures (To) of Ni60Nb40, Ni60Nb20Zr20, and Ni60Zr40 amorphous ribbons were 632 °C, 593 °C and 476 °C, respectively. It is determined that the higher Nb content increases the thermal stability against crystallization. Evaluation of corrosion resistance during potentiodynamic polarization test showed the polarization resistance value of 936 , 49, and 16 MΩ.cm2 for Ni60Nb40, Ni60Nb20Zr20, and Ni60Zr40 alloys, respectively. These results imply that the substitution of Zr with Nb enhances the thermal stability and corrosion resistance of Ni-Nb-Zr amorphous ribbons. Moreover, the H and E for Ni60Nb40, Ni60Nb20Zr20, and Ni60Zr40 amorphous ribbons were 171.3 and 15.01 GPa, 160.41 and 12.16 GPa, and, 188.52 and 14.13 GPa, respectively. It means complete substitution of Zr by Nb in Ni-Nb-Zr amorphous ribbons shows the highest hardness which is related to the Ni60Nb40 amorphous ribbon.
 

Keywords


  1. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses. CRC Press, 2017.
  2. Dastanpour E, Masood A, Enayati MH, Ström V. Multi-alloying of nanomet: conception and implementation of homogeneous nanocrystallization in high-flux density soft magnetic alloys. Journal of Materials Science. 2021;56(16):10124-34.
  3. Imani M, Enayati MH, Basak AK. A novel approach for mechanical alloying amorphisation in magnetic Fe–Co alloy system. Materials Research Express. 2019;6(7):076575.
  4. Halim Q, Mohamed NAN, Rejab MRM, Naim WNWA, Ma Q. Metallic glass properties, processing method and development perspective: a review. The International Journal of Advanced Manufacturing Technology. 2021;112(5-6):1231-58.
  5. Concustell A, Mattern N, Wendrock H, Kuehn U, Gebert A, Eckert J, et al. Mechanical properties of a two-phase amorphous Ni–Nb–Y alloy studied by nanoindentation. Scripta Materialia. 2007;56(2):85-8.
  6. Enayati MH, Schumacher P, Cantor B. Journal of Materials Science. 2002;37(24):5255-9.
  7. Xia L, Li WH, Fang SS, Wei BC, Dong YD. Binary Ni–Nb bulk metallic glasses. Journal of Applied Physics. 2006;99(2):026103.
  8. Hara S, Sakaki K, Itoh N, Kimura HM, Asami K, Inoue A. An amorphous alloy membrane without noble metals for gaseous hydrogen separation. Journal of Membrane Science. 2000;164(1-2):289-94.
  9. Donten M, Cesiulis H, Stojek Z. Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths. Electrochimica Acta. 2005;50(6):1405-12.
  10. Hara S, Hatakeyama N, Itoh N, Kimura HM, Inoue A. Hydrogen permeation through palladium-coated amorphous ZrMNi (M = Ti, Hf) alloy membranes. Desalination. 2002;144(1-3):115-20.
  11. Imani M, Dastanpoor E, Enayati MH, Basak AK. Thermodynamic Prediction of Phase Formation in Ni–P Alloy System During Mechanical Alloying: Comparison with Electroless Plating Technique. Metals and Materials International. 2020;27(6):1366-73.
  12. Wang D, Kong L-B, Liu M-C, Zhang W-B, Luo Y-C, Kang L. Amorphous Ni–P materials for high performance pseudocapacitors. Journal of Power Sources. 2015;274:1107-13.
  13. Deo LP, Kaufman MJ, Wang B, Nikodemski S, De Oliveira MF. Crystalline phases found in rapidly quenched Ni-Nb-Zr alloys. Journal of Microscopy. 2017;267(1):49-56.
  14. Enayati MH. Mechanical alloying of Ni-base alloys(Doctoral dissertation, University of Oxford).
  15. Enayati MH, Dastanpoor E. Two-stage amorphization reaction in Ni–Nb–Zr system. Advanced Powder Technology. 2015;26(5):1364-70.
  16. Kimura H, Inoue A, Yamaura S-i, Sasamori K, Nishida M, Shinpo Y, et al. Thermal Stability and Mechanical Properties of Glassy and Amorphous Ni-Nb-Zr Alloys Produced by Rapid Solidification. MATERIALS TRANSACTIONS. 2003;44(6):1167-71.
  17. Santos FS, Sort J, Fornell J, Baró MD, Suriñach S, Bolfarini C, et al. Mechanical behavior under nanoindentation of a new Ni-based glassy alloy produced by melt-spinning and copper mold casting. Journal of Non-Crystalline Solids. 2010;356(43):2251-7.
  18. Sarker S, Chandra D, Hirscher M, Dolan M, Isheim D, Wermer J, et al. Developments in the Ni–Nb–Zr amorphous alloy membranes. Applied Physics A. 2016;122(3).
  19. Tokunaga T, Matsumoto S, Ohtani H, Hasebe M. Thermodynamic Analysis of the Phase Equilibria in the Nb-Ni-Zr System. Journal of the Japan Institute of Metals. 2006;70(9):741-9.
  20. Zhu ZW, Zhang HF, Ding BZ, Hu ZQ. Synthesis and properties of bulk metallic glasses in the ternary Ni–Nb–Zr alloy system. Materials Science and Engineering: A. 2008;492(1-2):221-9.
  21. Paglieri SN, Pal NK, Dolan MD, Kim S-M, Chien W-M, Lamb J, et al. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni–Nb–Zr and Ni–Nb–Ta–Zr amorphous alloy membranes. Journal of Membrane Science. 2011;378(1-2):42-50.
  22. Tokunaga T, Matsumoto S, Ohtani H, Hasebe M. Thermodynamic Analysis of the Phase Equilibria in the Nb-Ni-Zr System. MATERIALS TRANSACTIONS. 2007;48(9):2263-71.
  23. Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, et al. Ni-based amorphous alloy membranes for hydrogen separation at 400°C. Journal of Membrane Science. 2009;326(2):549-55.
  24. Takahashi T, Higashi Si, Kai T, Kimura H, Masumoto T. Benzene hydrogenation activity of nickel catalysts prepared from amorphous Ni-Zr alloys. Catalysis Letters. 1994;26(3-4):401-9.
  25. Wang S, Xu D, Guo Y, Tang X, Wang Y, Zhang J, et al. Corrosion Behavior of Alloy Steels in Supercritical Water Environments. Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications: Springer Singapore; 2019. p. 149-259.
  26. Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials – Review. Corrosion Science. 2015;90:5-22.
  27. Bhandari J, Khan F, Abbassi R, Garaniya V, Ojeda R. Modelling of pitting corrosion in marine and offshore steel structures – A technical review. Journal of Loss Prevention in the Process Industries. 2015;37:39-62.
  28. Tan CG, Jiang WJ, Zhang ZC, Wu XQ, Lin JG. The effect of Ti-addition on the corrosion behavior of the partially crystallized Ni-based bulk metallic glasses. Materials Chemistry and Physics. 2008;108(1):29-32.
  29. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992;7(6):1564-83.
  30. Dolan MD, Hara S, Dave NC, Haraya K, Ishitsuka M, Ilyushechkin AY, et al. Thermal stability, glass-forming ability and hydrogen permeability of amorphous Ni64Zr36−XMX (M=Ti, Nb, Mo, Hf, Ta or W) membranes. Separation and Purification Technology. 2009;65(3):298-304.
  31. Enayati MH. Crystallization behavior of Ni-Nb amorphous alloys.
  32. Enayati MH. Mechanical alloying of Ni-base alloys(Doctoral dissertation, University of Oxford).
  33. Enayati MH, Chang IT, Schumacher P, Cantor B. Mechanical alloying of Ni-Nb alloys. InMaterials Science Forum 1997 (Vol. 235, pp. 85-90). Trans Tech Publications Ltd.
  34. Altounian Z, Guo‐hua T, Strom‐Olsen JO. Crystallization characteristics of Ni‐Zr metallic glasses from Ni20Zr80 to Ni70Zr30. Journal of Applied Physics. 1983;54(6):3111-6.
  35. Dong YD, Gregan G, Scott MG. Formation and stability of nickel-zirconium glasses. Journal of Non-Crystalline Solids. 1981;43(3):403-15.
  36. Daniel AA, Vasantha VS, Eric F. Evaluation of corrosion behavior of an amorphous Ni60Nb40–alloy with its crystalline form in stimulated PEMFC conditions. Journal of Dispersion Science and Technology. 2019;41(7):1022-9.
  37. Hashimoto K, Kumagai N, Yoshioka H, Kim JH, Akiyama E, Habazaki H, et al. Corrosion-resistant amorphous surface alloys. Corrosion Science. 1993;35(1-4):363-70.
  38. Liu S, Huang L, Pang S. Effect of microstructure on corrosion behaviours of a Ni-based metallic glass. Rare Metals. 2011;30(S1):529-32.
  39. Poddar C, Ningshen S, Jayaraj J. Corrosion assessment of Ni60 Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment. Journal of Alloys and Compounds. 2020;813:152172.
  40. Janik-Czachor M. Stability of the Passive State of Ni-Zr Glassy Alloys. CORROSION. 1993;49(9):763-8.
  41. Kawashima A, Yu WP, Zhang BP, Habazaki H, Asami K, Hashimoto K. Pitting Corrosion of Amorphous Ni–Zr Alloys in Chloride Ion Containing Sulfuric Acid Solutions. Materials Transactions, JIM. 1997;38(5):443-50.
  42. Jayalakshmi S, Vasantha VS, Fleury E, Gupta M. Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications. Applied Energy. 2012;90(1):94-9.
  43. Jayaraj J, Nanda Gopala Krishna D, Mallika C, Kamachi Mudali U. Passive film properties and corrosion behavior of Ni–Nb and Ni–Nb–Ta amorphous ribbons in nitric acid and fluorinated nitric acid environments. Materials Chemistry and Physics. 2015;151:318-29.
  44. Poddar C, Jayaraj J, Amirthapandian S, Ningshen S. Effect of thermally grown amorphous oxide film on the corrosion resistance properties of Ni50Zr25Nb25 metallic glass in nitric acid medium. Intermetallics. 2019;113:106571.
  45. D. N. G. K. J. Jayaraj, C. Mallika, U. Kamachi Mudali, "Passive film properties and corrosion behavior of NieNb and NieNbeTa amorphous ribbons in nitric acid and fluorinated nitric acid Environments," Materials Chemistry and Physics, vol. 1, 2014.
  46. Poddar C, Jayaraj J, Ningshen S, Mudali UK. Effect of thermal oxidation on the oxide characteristic and corrosion behavior of Ni60Nb40 amorphous ribbon in nitric acid. Applied Surface Science. 2019;479:430-9.
  47. Schuh CA, Lund AC, Nieh TG. New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Materialia. 2004;52(20):5879-91.
  48. Medeiros BB, Medeiros MM, Fornell J, Sort J, Baró MD, Jorge AM. Nanoindentation response of Cu–Ti based metallic glasses: Comparison between as-cast, relaxed and devitrified states. Journal of Non-Crystalline Solids. 2015;425:103-9.