Development of Asymmetric Rolling as a Severe Plastic Deformation Method: A Review

Document Type : Review Paper

Authors

1 Karaganda Industrial University, Republic av. 30, Temirtau, 101400, Kazakhstan

2 AEO Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan, 010000, Kazakhstan

3 Rudny Industrial Institute, 50 let Oktyabrya str. 38, 111500,Rudny, Kazakhstan

Abstract

This paper presents an overview of the latest trends in the development of severe plastic deformation (SPD) using rolling methods. From many scientific works, it is known that severe plastic deformation provides intense grain grinding up to ultrafine and nanosized grains during multi-cycle deformation. It is also possible to obtain a uniform or gradient grain distribution over the cross-section of the workpiece. During SPD processes, the strength parameters can be increased several times. Of all the methods considered, asymmetric rolling has become the most widespread owing to its simple implementation in production conditions. Most of the known methods and devices for asymmetric rolling are designed for deformation in rolls with a smooth barrel, while the use of rolls with a relief surface allows the processing of metal to obtain a higher level of equivalent strain. Ensuring a high asymmetry level when rolling in relief rolls allows, in addition to the development of shear strain in two transverse directions (height and width), it also provides an additional level of shear strain in the longitudinal direction. In addition to the speed asymmetry, the rolling scheme in relief rolls is also suitable for the implementation of geometric asymmetry when one of the relief rolls has a reduced or increased diameter while maintaining the relief geometry on the roll surface.

Keywords


  1. Valiev RZ. SPD Processing and Enhanced Properties in Metallic Materials. Investigations and Applications of Severe Plastic Deformation: Springer Netherlands; 2000. p. 221-30.
  2. Glezer AM, Metlov LS. Physics of megaplastic (Severe) deformation in solids. Physics of the Solid State. 2010;52(6):1162-9.
  3. Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science. 2006;51(7):881-981.
  4. Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science. 2008;53(6):893-979.
  5. Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science and Engineering: A. 2016;652:325-52.
  6. Volokitin A, Volokitina I, Panin E. Pre-Heat Treatment of Stainless Steel Before Torsion Under High Pressure. Trudy Universiteta. 2022(1):28-33.
  7. Zhang X, Liu X, Wang J, Cheng Y. Effect of route on tensile anisotropy in equal channel angular pressing. Materials Science and Engineering: A. 2016;676:65-72.
  8. Valiev RZ. Superior Strength in Ultrafine-Grained Materials Produced by SPD Processing. MATERIALS TRANSACTIONS. 2014;55(1):13-8.
  9. Volokitina IE. Effect of Preliminary Heat Treatment on Deformation of Brass by the Method of ECAP. Metal Science and Heat Treatment. 2021;63(3-4):163-7.
  10. Nagasekhar AV. Analysis of T-Shaped Equal Channel Angular Pressing using the Finite Element Method. Metals and Materials International. 2008;14(5):565-8.
  11. Raab GJ, Valiev RZ, Lowe TC, Zhu YT. Continuous processing of ultrafine grained Al by ECAP–Conform. Materials Science and Engineering: A. 2004;382(1-2):30-4.
  12. Raab GI, Fakhretdinova EI, Valiev RZ, Trifonenkov LP, Frolov VF. Computer Study of the Effect of Tooling Geometry on Deformation Parameters in the Plastic Shaping of Aluminum Wire Rod by Multi-ECAP-Conform. Metallurgist. 2016;59(11-12):1007-14.
  13. Beygelzimer Y, Varyukhin V, Synkov S. Shears, Vortices, and Mixing During Twist Extrusion. International Journal of Material Forming. 2008;1(S1):443-6.
  14. Zherebtsov SV, Salishchev GA, Galeyev RM, Valiakhmetov OR, Mironov SY, Semiatin SL. Production of submicrocrystalline structure in large-scale Ti–6Al–4V billet by warm severe deformation processing. Scripta Materialia. 2004;51(12):1147-51.
  15. Miura H, Yu G, Yang X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Materials Science and Engineering: A. 2011;528(22-23):6981-92.
  16. Grabovetskaya GP, Mishin IP, Naydenkin EV, Zabudchenko OV, Stepanova EN. Mechanical properties and creep of VT22 alloy after radial-shear rolling and subsequent aging. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE “PHYSICAL MESOMECHANICS MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY”: AIP Publishing; 2022.
  17. Lezhnev SN, Naizabekov AB, Panin EA, Volokitina IE, Arbuz AS. Graded Microstructure Preparation in Austenitic Stainless Steel during Radial-Shear Rolling. Metallurgist. 2021;64(11-12):1150-9.
  18. Arbuz A, Kawalek A, Ozhmegov K, Dyja H, Panin E, Lepsibayev A, et al. Using of Radial-Shear Rolling to Improve the Structure and Radiation Resistance of Zirconium-Based Alloys. Materials (Basel). 2020;13(19):4306.
  19. Nayzabekov A, Lezhnev S, Maksimkin O, Tsai K, Panin E, Arbuz A. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTENITIC STAINLESS STEEL AISI-321 AFTER RADIAL SHEAR ROLLING. Journal of Chemical Technology & Metallurgy. 2018 May 1;53(3).
  20. Naizabekov A, Arbuz A, Lezhnev S, Panin E, Volokitina I. The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling. Physica Scripta. 2019;94(10):105702.
  21. Naizabekov A, Lezhnev S, Arbuz A, Panin E. Combined process “helical rolling-pressing” and its effect on the microstructure of ferrous and non-ferrous materials. Metallurgical Research & Technology. 2018;115(2):213.
  22. Naizabekov A, Volokitina I, Lezhnev S, Arbuz A, Panin E, Volokitin A. Structure and Mechanical Properties of AISI1045 in the Helical Rolling–Pressing Process. Journal of Materials Engineering and Performance. 2020;29(1):315-29.
  23. Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Materialia. 1999;47(2):579-83.
  24. Hashemi SG, Eghbali B. Processing of Ultrafine Grained Cu-30%Zn Alloy through Severe Plastic Deformation Using Accumulative Roll Bonding. Materials Science Forum. 2011;667-669:571-6.
  25. Kodjaspirov GE, Dobatkin SV, Rudskoi AI, Naumov AA. Production of ultrafine-grained sheet from ultralow-carbon steel by pack rolling. Metal Science and Heat Treatment. 2007;49(11-12):561-5.
  26. Rudskoi AI, Kodzhaspirov GE, Dobatkin SV. Advanced technologies for manufacturing sheet products with an ultrafine-grained structure. Russian Metallurgy (Metally). 2012;2012(1):72-5.
  27. Alizadeh M, Salahinejad E. Processing of ultrafine-grained aluminum by cross accumulative roll-bonding. Materials Science and Engineering: A. 2014;595:131-4.
  28. Alizadeh M, Paydar MH. High-strength nanostructured Al/B4C composite processed by cross-roll accumulative roll bonding. Materials Science and Engineering: A. 2012;538:14-9.
  29. Sarma VS, Wang J, Jian WW, Kauffmann A, Conrad H, Freudenberger J, et al. Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Materials Science and Engineering: A. 2010;527(29-30):7624-30.
  30. Marnette J, Weiss M, Hodgson PD. Roll-formability of cryo-rolled ultrafine aluminium sheet. Materials & Design. 2014;63:471-8.
  31. Wang Y, Jiao T, Ma E. Dynamic Processes for Nanostructure Development in Cu after Severe Cryogenic Rolling Deformation. MATERIALS TRANSACTIONS. 2003;44(10):1926-34.
  32. Shanmugasundaram T, Murty BS, Subramanya Sarma V. Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scripta Materialia. 2006;54(12):2013-7.
  33. Hosford WF, Caddell RM. Metal Forming: Cambridge University Press; 2011 2011/02/07.
  34. Lee YB, Shin DH, Park K-T, Nam WJ. Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature. Scripta Materialia. 2004;51(4):355-9.
  35. Ji YH, Park JJ. Development of severe plastic deformation by various asymmetric rolling processes. Materials Science and Engineering: A. 2009;499(1-2):14-7.
  36. Kim WJ, Lee JB, Kim WY, Jeong HT, Jeong HG. Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling. Scripta Materialia. 2007;56(4):309-12.
  37. Chang LL, Cho JH, Kang SB. Microstructure and mechanical properties of AM31 magnesium alloys processed by differential speed rolling. Journal of Materials Processing Technology. 2011;211(9):1527-33.
  38. Kim WJ, Lee YG, Lee MJ, Wang JY, Park YB. Exceptionally high strength in Mg–3Al–1Zn alloy processed by high-ratio differential speed rolling. Scripta Materialia. 2011;65(12):1105-8.
  39. Kim WJ, Yoo SJ, Lee JB. Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature. Scripta Materialia. 2010;62(7):451-4.
  40. Ji YH, Park JJ, Kim WJ. Finite element analysis of severe deformation in Mg–3Al–1Zn sheets through differential-speed rolling with a high speed ratio. Materials Science and Engineering: A. 2007;454-455:570-4.
  41. Pesin A, Pustovoytov DO. Influence of Process Parameters on Distribution of Shear Strain through Sheet Thickness in Asymmetric Rolling. Key Engineering Materials. 2014;622-623:929-35.
  42. Zuo F-q, Jiang J-h, Shan A-d, Fang J-m, Zhang X-y. Shear deformation and grain refinement in pure Al by asymmetric rolling. Transactions of Nonferrous Metals Society of China. 2008;18(4):774-7.
  43. Bobor K, Hegedűs Z, Gubicza J, Barkai I, Pekker P, Krallics G. Microstructure and mechanical properties of Al 7075 alloy processed by differential speed rolling. Periodica Polytechnica Mechanical Engineering. 2012;56(2):111.
  44. Pesin AM, Pustovoytov DO, Shveeva TV, Steblyanko VL, Fedoseev SA. Simulation of nonmonotonic metal flow during asymmetric sheet rolling with different velocities of the rolls. Vestnik of Nosov Magnitogorsk State Technical University. 2017;15(1):56-63.
  45. Yu H-l, Tieu AK, Lu C, Liu X-h, Godbole A, Kong C. Mechanical properties of Al–Mg–Si alloy sheets produced using asymmetric cryorolling and ageing treatment. Materials Science and Engineering: A. 2013;568:212-8.
  46. Yu HL, Lu C, Tieu AK, Li HJ, Godbole A, Zhang SH. Special Rolling Techniques for Improvement of Mechanical Properties of Ultrafine-Grained Metal Sheets: a Review. Advanced Engineering Materials. 2016;18(5):754-69.
  47. Yu H, Lu C, Tieu K, Liu X, Sun Y, Yu Q, et al. Asymmetric cryorolling for fabrication of nanostructural aluminum sheets. Scientific reports. 2012;2:772-.
  48. Pesin AM, Pustovoitov DO, Biryukova OD. The effect of speed asymmetry on the strain state in aluminium bimetals during accumulative rolling. IOP Conference Series: Materials Science and Engineering. 2018;447:012066.
  49. Shatalov RL, Maksimov EA. Analysis of Asymmetric Rolling Efficiency for Improving Rolled Strip Accuracy. Metallurgist. 2016;60(7-8):730-5.
  50. Belsky SM, Mazur IP, Lezhnev SN, Panin EA. A TWO-ZONE MODEL OF BROWDENING DURING ROLLING. Journal of Chemical Technology & Metallurgy. 2017 Mar 1;52(2).
  51. Korolev AA. Efficiency coefficient and power of metal deformation during asymmetric rolling. Izvestiya vuzov. Ferrous metallurgy, 1978;2:160-167.
  52. Korolev AA. Efficiency coefficient and power of metal deformation during asymmetric rolling. Izvestiya vuzov. Ferrous metallurgy, 1978;2:160-167.
  53. Ashkeyev Z, Abishkenov M, Kanseit N. Studying the Stress State and Speed Parameters with Asymmetric Rolling. Trudy Universiteta. 2021(2):31-6.
  54. Pesin AM, Pustovoytov DO, Perehogih AA, Sverdlik MK. Simulation of shear strain in the extreme case of asymmetric sheet rolling. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. GI Nosova.[Vestnik of Nosov Magnitogorsk State Technical University]. 2013(1):65-8.
  55. Fedorov NN, Botyev VV, Fedorov NA, inventors; Siberian Metallurgical Institute named after Sergo Ordzhonikidze, assignee. Method of Rolling Strips, USSR patent 1574294. 1990 Jun 30.
  56. Pesin AM, Pustovoitov DO, Biryukova OD, Kozhemyakina AE. Asymmetric Rolling of Sheets and Tapes: History and Prospects of Development. Bulletin of the South Ural State University - Metallurgy. 2020;20:81-96.
  57. Pesin AM, Pustovoitov DO, Vafin RK, Biryukova OD. Modeling of Residual Stresses in Aluminum Sheets Made of AmG6 Alloy After Asymmetric Rolling. Quality in Materials Processing. 2018;2:10-16.
  58. Korchunov AG, Konstantinov DV, Medvedeva EM. Magnitogorsk Rolling Practice 2022: Proceedings of the VI.
  59. Salganik VM, Pesin AM. Asimmetrichnaya tonkolistovaya prokatka: razvitiye teorii, tekhnologii i novyye resheniya [Asymmetric sheet rolling: development of theory, technology and new solutions]. Moscow, MISIS Publ. 1997.
  60. Azbanbayev EM, Isagulov AZ, Azotte A, Aitbayev NB. Influence of Asymmetric Rolling in Cone-Shaped Rolls on Mechanical Properties of Low-Carbon Steel. University Proceedings. 2015;2:34-37.

 

  1. Pesin AM, Chikishev DN, Blinov SV, Blinova EE, inventors; Nosov Magnitogorsk State Technical University, assignee. Device for Sheet Metal Production. RU patent 63720. 2007 Jun 10.

 

  1. Larikov SP, Pesin AM, Salganik VM, Chebotov VM, inventors; Nosov Magnitogorsk State Technical University, assignee. Method of Sheet Metal Obtaining. USSR patent 1526855. 1989 Dec 7.
  2. Breuer M, Langer H, Munker J, inventors; SMS ZIMAG AG, assignee. Rolling device, in particular a cage for asymmetric rolling. RU Patent 2414976. 2011 Mar 27.
  3. Pesin AM, Pustovoitov DO, Sverdlik MK, inventors; Nosov Magnitogorsk State Technical University, assignee. Method of Asymmetric Rolling of Thick-Sheet Metal, RU patent 2548869. 2015 Apr 20.
  4. Salganik VM. Application of Plasticity Theory to the Development and Analysis of Technological Processes. Magnitogorsk: Nosov Magnitogorsk State Technical University; 2012.
  5. Pesin AM, Salganik VM, Drigun EM, Chikishev DN, inventors; Nosov Magnitogorsk State Technical University, assignee. Device for Asymmetric Rolling of Thick-Sheet Metal. RU Patent 2254943. 2005 Jun 27.
  6. Pesin AM, Tkachenko AP, Pustovoitov DO, Lokotunina NM, Gorkin NA, Biryukov MA, inventors; Nosov Magnitogorsk State Technical University, assignee. Method of Asymmetric Metal Rolling. RU Patent 2528601. 2014 Sep 20.
  7. Bogatov AA, Nukhov DS, inventors; Ural Federal University named after the First President of Russia B.N. Yeltsin, assignee. Roll knot. RU Patent 156711. 2015 Nov 10.
  8. Naizabekov AB, Lezhnev SN, Panin EA, Mazur IP. Alternating Sign Rolling Technology in Grooved Rolls for Nonferrous Metal Plate Billets. Metallurgist. 2017;61(5-6):406-13.
  9. Naizabekov A, Lezhnev S, Koinov T, Mazur I, Panin E. RESEARCH AND DEVELOPMENT OF TECHNOLOGY FOR ROLLING OF HIGH-QUALITY PLATES OF NON-FERROUS METALS AND ALLOYS IN RELIEF ROLLS. Journal of Chemical Technology & Metallurgy. 2016 Jul 1;51(4).
  10. Naizabekov AB, Lezhnev SN, Panin EA, Tymchenko AA, Esbolat AB. Improvement of the deformation technology in relief rolls by asymmetric rolling realization. Ferrous Metallurgy Bulletin of Scientific , Technical and Economic Information. 2021;77(4):445-54.