Biosynthesised Sm2O3 NPs as an efficient catalyst for the preparation of morpholine and piperidine derivatives

Document Type : Research Paper

Authors

1 Department of Chemistry, Faculty of Sciences, University of Guilan, PO Box 41335-1914, Rasht, Iran

2 Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

Abstract

Biosynthesis of Sm2O3 NPs using Sm(NO3)3.6H2O and double bloom purple Rose of Sharon in ethanol, produced an efficient catalyst for the synthesis of some nitrogen-containing heterocycles such as morpholine and piperidine derivatives. Sm2O3 nanoparticles have been confirmed by FT-IR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX). The products were obtained in moderate to good yields under mild reaction conditions and identified by CHN analysis, NMR, and FT-IR spectra. The catalyst could be easily separated from the reaction mixture by centrifugation, washed, dried, and re-entered to a fresh reaction mixture 4 times without considerable loss of activity.

Keywords


  1.  

    1. Pan T, He X, Chen B, Chen H, Geng G, Luo H, et al. Development of benzimidazole derivatives to inhibit HIV-1 replication through protecting APOBEC3G protein. European Journal of Medicinal Chemistry. 2015;95:500-13.
    2. Zhao Ja, Guo Y, Hu J, Yu H, Zhi S, Zhang J. Potential anticancer activity of benzimidazole-based mono/dinuclear Zn(II) complexes towards human carcinoma cells. Polyhedron. 2015;102:163-72.
    3. Salahuddin, Shaharyar M, Mazumder A. Benzimidazoles: A biologically active compounds. Arabian Journal of Chemistry. 2017;10:S157-S73.
    4. Achar KCS, Hosamani KM, Seetharamareddy HR. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. European Journal of Medicinal Chemistry. 2010;45(5):2048-54.
    5. Mahmood K, Hashmi W, Ismail H, Mirza B, Twamley B, Akhter Z, et al. Synthesis, DNA binding and antibacterial activity of metal(II) complexes of a benzimidazole Schiff base. Polyhedron. 2019;157:326-34.
    6. Bektas H, Albay C, Sökmen BB, Aydın S, Menteşe E, Aydın G, et al. Synthesis, Antioxidant, and Antibacterial Activities of Some New 2-(3-fluorobenzyl)-1 H-benzimidazole Derivatives. Journal of Heterocyclic Chemistry. 2018;55(10):2400-7.
    7. Trivedi R, De SK, Gibbs RA. A convenient one-pot synthesis of 2-substituted benzimidazoles. Journal of Molecular Catalysis A: Chemical. 2006;245(1-2):8-11.
    8. Bai Y, Lu J, Shi Z, Yang B. Synthesis of 2,15-hexadecanedione as a precursor of Muscone. Synlett. 2001;2001(04):0544-6.
    9. Hasegawa E, Yoneoka A, Suzuki K, Kato T, Kitazume T, Yanagi K. Reductive transformation of α,β-epoxy ketones and other compounds promoted through photoinduced electron transfer processes with 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI). Tetrahedron. 1999;55(45):12957-68.
    10. Harkala KJ, Eppakayala L, Maringanti TC. Synthesis and biological evaluation of benzimidazole-linked 1,2,3-triazole congeners as agents. Org Med Chem Lett. 2014;4(1):14-.
    11. Heravi MM, Nami N, Oskooie HA, Hekmatshoar R. Synthesis of Thiazinobenzimidazole Derivatives in a Solventless System Under Microwave Irradiation. Phosphorus, Sulfur, and Silicon and the Related Elements. 2005;180(7):1605-10.
    12. Vahedi H, Nami N, Nami N. Synthesis and Structure Elucidation of 4-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl-methylene)-2-phenyl-1 H-imidazol-5 (4H)-one. E-Journal of Chemistry. 2010;7(3):1116-9.
    13. Nami N, Hosseinzadeh M, Nami N, Haghdadi M. Synthesis of Substituted Pyrazino[5,6-b]pyrimidine and Some Indole Derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements. 2009;184(11):2846-55.
    14. Penieres‐Carrillo JG, Ríos‐Guerra H, Pérez‐Flores J, Rodríguez‐Molina B, Torres‐Reyes Á, Barrera‐Téllez F, et al. Reevaluating the synthesis of 2,5‐disubstituted‐1 H ‐benzimidazole derivatives by different green activation techniques and their biological activity as antifungal and antimicrobial inhibitor. Journal of Heterocyclic Chemistry. 2019;57(1):436-55.
    15. Kaveh S, Nami N, Norouzi B, Mirabi A. Biosynthesis of (MWCNTs)-COOH/CdO hybrid as an effective catalyst in the synthesis of pyrimidine-thione derivatives by water lily flower extract. Inorganic and Nano-Metal Chemistry. 2021;51:1459-1470.
    16. Bouzigues C, Gacoin T, Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano. 2011;5(11):8488-505.
    17. Singh S, Srivastava P, Kapoor IPS, Singh G. Preparation, characterization, and catalytic activity of rare earth metal oxide nanoparticles. Journal of Thermal Analysis and Calorimetry. 2012;111(2):1073-82.
    18. Ullah N, Song Z, Liu W, Kuo C-C, Ramiere A, Cai X. Photo-promoted in situ reduction and stabilization of Pd nanoparticles by H2 at photo-insensitive Sm2O3 nanorods. Journal of Colloid and Interface Science. 2022;607:479-87.
    19. Abdoli M, Nami N, Hossaini Z. One‐pot synthesis of spiro‐acridine/indoline and indoline derivatives using (MWCNTs)‐COOH/La2O3 hybrid as an effective catalyst. Journal of Heterocyclic Chemistry. 2020;58(2):523-33.
    20. Song H-W, Kim N-Y, Park J-e, Ko J-H, Hickey RJ, Kim Y-H, et al. Shape-controlled syntheses of metal oxide nanoparticles by the introduction of rare-earth metals. Nanoscale. 2017;9(8):2732-8.
    21. Kovalchukova OV, Bostanabad AS, Lobanov NN, Rudakova TA, Strashnov PV, Skarzhevskii YA, et al. Copper(II) alkyl- and benzylnitrosohy-droxylaminates as precursors for the synthesis of copper(i) oxide micro- and nanoparticles of various morphologies. Inorganic Materials. 2014;50(11):1093-8.
    22. Zhu W, Xu L, Ma J, Yang R, Chen Y. Effect of the thermodynamic properties of W/O microemulsions on samarium oxide nanoparticle size. Journal of Colloid and Interface Science. 2009;340(1):119-25.
    23. Qiu J-D, Zhou W-M, Guo J, Wang R, Liang R-P. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Analytical Biochemistry. 2009;385(2):264-9.
    24. Sone BT, Manikandan E, Gurib-Fakim A, Maaza M. Sm2O3 nanoparticles green synthesis via Callistemon viminalis' extract. Journal of Alloys and Compounds. 2015;650:357-62.
    25. Gao J, Zhao Y, Yang W, Tian J, Guan F, Ma Y, et al. Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Materials Chemistry and Physics. 2003;77(1):65-9.
    26. Chin WC, Cheong KY, Hassan Z. Sm2O3 gate dielectric on Si substrate. Materials Science in Semiconductor Processing. 2010;13(5-6):303-14.
    27. Michel CR, Martínez-Preciado AH, Parra R, Aldao CM, Ponce MA. Novel CO2 and CO gas sensor based on nanostructured Sm2O3 hollow microspheres. Sensors and Actuators B: Chemical. 2014;202:1220-8.
    28. Heidarzadeh T, Nami N, Zareyee D. Preparation of (MWCNTs)-COOH/CeO2 hybrid as an efficient catalyst for Claisen-Schmidt condensation. Journal of Applied Chemical Research. 2021;15:44-57.
    29. Kaveh S, Norouzi B, Nami N, Mirabi A. Phytochemical synthesis of CdO nanoparticles: fabrication of electrochemical sensor for quantification of cefixime. Journal of Materials Science: Materials in Electronics. 2021;32(7):8932-43.
    30. Nami N, Neumuller B, Heravi MM, Haghdadi M. Synthesis and crystal structure of chiral hydroquinoxaline derivatives. Mendeleev Communications. 2008;18(3):153-5.
    31. Zhang H, Dai H, Liu Y, Deng J, Zhang L, Ji K. Surfactant-mediated PMMA-templating fabrication and characterization of three-dimensionally ordered macroporous Eu2O3 and Sm2O3 with mesoporous walls. Materials Chemistry and Physics. 2011;129(1-2):586-93.
    32. Kang J-G, Min B-K, Sohn Y. Synthesis and characterization of Sm(OH)3 and Sm2O3 nanoroll sticks. Journal of Materials Science. 2014;50(4):1958-64.
    33. Ye XR, Daraio C, Wang C, Talbot JB, Jin S. Room Temperature Solvent-Free Synthesis of Monodisperse Magnetite Nanocrystals. Journal of Nanoscience and Nanotechnology. 2006;6(3):852-6.
    34. Guo-hua Z, Ming-fang L, Ming-li L. Differential pulse voltammetric determination of dopamine with the coexistence of ascorbic acid on boron-doped diamond surface. Open Chemistry. 2007;5(4):1114-23.
    35. Yousefi T, Mostaedi MT, Ghasemi M, Ghadirifar A. A Simple Way to Synthesize of Samarium Oxide Nanoparticles: Characterization and Effect of pH on Morphology. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2015;46(1):137-42.
    36. Wiarda D, Uhrmacher M, Lieb KP, Bartos A. Golden book of phase, Transitions. Wroclaw. 2002;1:1.
    37. Jiang S, Liu J, Lin C, Li X, Li Y. High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics. 2013;113(11):113502.
    38. Warren- Aver bach Applications. Industrial Applications of X-Ray Diffraction: CRC Press; 1999. p. 865-86.
    39. Singh RK, Duvedi R. Environment-friendly green chemistry approaches for an efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by tannic acid. Arabian Journal of Chemistry. 2018;11(1):91-8.
    40. Phiwdang K, Suphankij S, Mekprasart W, Pecharapa W. Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors. Energy Procedia. 2013;34:740-5.
    41. Rostami Z, Rouhanizadeh M, Nami N, Zareyee D. Fe3O4 magnetic nanoparticles (MNPs) as an effective catalyst for synthesis of indole derivatives. Nanochemistry Research. 2018;3:142-148.
    42. Nami N, Nami N. Efficient solvent-free synthesis of amidines using nano-Fe3O4 encapsulated-sillica particles bearing sulfonic acid. Journal of Chemical Biological and Physical Sciences. Section B. 2015;5:1195-1204.
    43. Heidarzadeh T, Nami N, Zareyee D. Synthesis of Indole Derivatives Using Biosynthesized ZnO-CaO Nanoparticles as an Efficient Catalyst. Journal of Nano Research. 2021;66:61-71.
    44. The Synthesis of silver nanoparticles using Beetroot extract and its antibacterial and catalytic activity. Eurasian Chemical Communications. 2019;1(6):545.
    45. Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry. 2016;19:211-6.