Nano-Devitrification and Structural Evolution of Rapidly Solidified Amorphous Al-TM (Cu-Co)-Y (at.%) Alloy

Document Type : Research Paper

Authors

School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

Abstract

Activation energies and other kinetic parameters of primary crystallization of Al86Cu6Co2Y6 (at.%) amorphous alloy describing the mechanism was determined. Melt spinning on a child copper wheel was used to prepare the Al86Cu6Co2Y6 (at. %) amorphous ribbons. The ribbons at as-spun and annealed conditions were studied by optical microscopy (OM), differential scanning calorimetry (DSC), X-ray diffraction and field emission scanning electron microscopy (FESEM). The kinetic parameters of the crystallization process were determined by Kissinger and Moynihan methods at non-isothermal condition. Crystallization mechanism was studied using the Johnson–Mehl–Avrami equation. According to the average value of Avrami exponent (2.0650.16), the primary crystallization process is conducted by 3D diffusional growth with decreasing rate. The α-Al nanoparticles below 50 nm in size distributed evenly in the glassy matrix and intermetallic phases (Al3Y, AlCu3 and Al11Y3) were formed during the first and second stages of crystallization, respectively.

Keywords


  1. ÖZtÜRk S, SÜNbÜL SE, İCİN K. Effects of melt spinning process parameters and wheel surface quality on production of 6060 aluminum alloy powders and ribbons. Transactions of Nonferrous Metals Society of China. 2020;30(5):1169-82.
  2. Dehghani K, Salehi M, Salehi M, Aboutalebi H. Comparing the melt-spun nanostructured aluminum 6061 foils with conventional direct chill ingot. Materials Science and Engineering: A. 2008;489(1-2):245-52.
  3. Salehi M, Dehghani K. Structure and properties of nanostructured aluminum A413.1 produced by melt spinning compared with ingot microstructure. Journal of Alloys and Compounds. 2008;457(1-2):357-61.
  4. Karaköse E, Keskin M. Structural investigations of mechanical properties of Al based rapidly solidified alloys. Materials & Design. 2011;32(10):4970-9.
  5. Katgerman L, Dom F. Rapidly solidified aluminium alloys by meltspinning. Materials Science and Engineering: A. 2004;375-377:1212-6.
  6. Salehi M, Shabestari SG, Boutorabi SMA. Nanostructure and Mechanical Properties of Bulk Al86Ni6Y6Ce2 Alloy Produced by Hot Consolidation of Amorphous Melt-Spun Flakes. Metallurgical and Materials Transactions A. 2014;45(13):6344-51.
  7. Salehi M, Shabestari SG, Boutorabi SMA. Nanostructure evolution and mechanical properties of rapidly solidified Al3Ni3RE (Y, Ce) alloys. Materials Science and Engineering: A. 2013;586:407-12.
  8. Triveño Rios C, Suriñach S, Baró MD, Bolfarini C, Botta WJ, Kiminami CS. Glass forming ability of the Al–Ce–Ni system. Journal of Non-Crystalline Solids. 2008;354(42-44):4874-7.
  9. Wang SH, Bian XF. Effect of Si and Co on the crystallization of Al–Ni–RE amorphous alloys. Journal of Alloys and Compounds. 2008;453(1-2):127-30.
  10. Cuevas FG, Lozano-Perez S, Aranda RM, Caballero ES. Crystallization of amorphous Al-Sm-Ni-(Cu) alloys. Intermetallics. 2008; 106537- 112.
  11. Shen Y, Perepezko JH. Al-based amorphous alloys: Glass-forming ability, crystallization behavior and effects of minor alloying additions. Journal of Alloys and Compounds. 2017;707:3-11.
  12. Wang Y, Liu Y, Li Y, An B, Cao G, Jin S, et al. Crystallization of Al-based Amorphous Alloys in Good Conductivity Solution. Journal of Materials Science & Technology. 2014;30(12):1262-70.
  13. Roy D, Raghuvanshi H. Study on crystallization kinetics of Al65Cu20Ti15 amorphous alloy. Journal of Non-Crystalline Solids. 2011;357(7):1701-4.
  14. Révész Á, Varga LK, Suriñach S, Baró MD. Thermal stability, crystallization kinetics, and grain growth in an amorphous Al85Ce5Ni8Co2 alloy. Journal of Materials Research. 2002;17(8):2140-6.
  15. Hyun JI, Kim CI, Nam SW, Kim WT, Kim DH. Nanoscale phase separation and microstructure evolution during crystallization in Al-Si-Ni amorphous alloy. Materials & Design. 2020;192:108719.
  16. Salehi M, Shabestari SG, Boutorabi SMA. Nano-crystal development and thermal stability of amorphous Al–Ni–Y–Ce alloy. Journal of Non-Crystalline Solids. 2013;375:7-12.
  17. Kim HS, Hong SI. A model of the ductile–brittle transition of partially crystallized amorphous Al–Ni–Y alloys. Acta Materialia. 1999;47(7):2059-66.
  18. Huang ZH, Li JF, Rao QL, Zhou YH. Primary crystallization of Al–Ni–RE amorphous alloys with different type and content of RE. Materials Science and Engineering: A. 2008;489(1-2):380-8.
  19. Dong Q, Song P, Tan J, Qin XM, Li CJ, Gao P, et al. Non-isothermal crystallization kinetics of a Fe–Cr–Mo–B–C amorphous powder. Journal of Alloys and Compounds. 2020;823:153783.
  20. Gögebakan M, Okumus M. Structure and crystallization kinetics of amorphous Al--Ni--Si alloy. Materials Science (0137-1339). 2009 Jun 1;27(2).
  21. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia. 2000;48(1):279-306.
  22. Song K, Bian XF, Lv X, Guo J, Li G, Xie M. Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu-Zr-Ag metallic glasses. Materials Science and Engineering: A. 2009; 87:93- 506.
  23. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards. 1956;57(4):217.
  24. Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry. 1957;29(11):1702-6.
  25. Fatmi M, Ghebouli B, Ghebouli MA, Chihi T, Abdul Hafiz M. The kinetics of precipitation in Al-2.4wt% Cu alloy by Kissinger, Ozawa, Bosswel and Matusita methods. Physica B: Condensed Matter. 2011;406(11):2277-80.
  26. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. Journal of Thermal Analysis. 1978;13(2):283-92.
  27. Paul T, Loganathan A, Agarwal A, Harimkar SP. Kinetics of isochronal crystallization in a Fe-based amorphous alloy. Journal of Alloys and Compounds. 2018;753:679-87.
  28. Lu XF, Hay JN. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer. 2001;42(23):9423-31.
  29. Henderson DW. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. Journal of Non-Crystalline Solids. 1979;30(3):301-15.