1. Alipour A, Javanshir S, Peymanfar R. Preparation, Characterization and Antibacterial Activity Investigation of Hydrocolloids Based Irish Moss/ZnO/CuO Bio-based Nanocomposite Films. Journal of Cluster Science. 2018;29(6):1329-36.
2. Zare Khafri H, Ghaedi M, Asfaram A, Javadian H, Safarpoor M. Synthesis of CuS and ZnO/Zn(OH)2 nanoparticles and their evaluation for in vitro antibacterial and antifungal activities. Applied Organometallic Chemistry. 2018;32(7):e4398.
3. Bhattacharya P, Neogi S. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents. Materials Research Express. 2017;4(9):095005.
4. Ghorbanpour M. Antibacterial activity of porous anodized copper. Journal of Ultrafine Grained and Nanostructured Materials. 2018 Jun 1;51(1):84-9.
5. Garshasbi N, Ghorbanpour M, Nouri A, Lotfiman S. Preparation of Zinc Oxide-Nanoclay Hybrids by Alkaline Ion Exchange Method. Brazilian Journal of Chemical Engineering. 2017;34(4):1055-63.
6. Li J, Xie B, Xia K, Li Y, Han J, Zhao C. Enhanced Antibacterial Activity of Silver Doped Titanium Dioxide-Chitosan Composites under Visible Light. Materials (Basel). 2018;11(8):1403.
7. Liu PC, Hsieh JH, Li C, Chang YK, Yang CC. Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films. 2009;517(17):4956-60.
8. Amarjargal A, Tijing LD, Im I-T, Kim CS. Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chemical Engineering Journal. 2013;226:243-54.
9. Abebe B, Zereffa EA, Tadesse A, Murthy HCA. A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale research letters. 2020;15(1):190-.
10. Zhang N, Gao Y, Zhang H, Feng X, Cai H, Liu Y. Preparation and characterization of core–shell structure of SiO2@Cu antibacterial agent. Colloids and Surfaces B: Biointerfaces. 2010;81(2):537-43.
11. Konieczny J, Rdzawski Z. Antibacterial properties of copper and its alloys. Archives of Materials Science and Engineering. 2012;56(2):53-60.
12. Palza H. Antimicrobial polymers with metal nanoparticles. International journal of molecular sciences. 2015;16(1):2099-116.
13. Ubale AU, Belkhedkar MR. Size Dependent Physical Properties of Nanostructured α-Fe2O3 Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method for Antibacterial Application. Journal of Materials Science & Technology. 2015;31(1):1-9.
14. Khataminejad MR, Mirnejad R, Sharif M, Hashemi M, Sajadi N, Piranfar V. Antimicrobial Effect of Imipenem-Functionalized Fe(2)O(3) Nanoparticles on Pseudomonas aeruginosa Producing Metallo β-lactamases. Iran J Biotechnol. 2015;13(4):43-7.
15. Irshad R, Tahir K, Li B, Ahmad A, R. Siddiqui A, Nazir S. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. Journal of Photochemistry and Photobiology B: Biology. 2017;170:241-6.
16. Stanić V, Tanasković SB. Antibacterial activity of metal oxide nanoparticles. Nanotoxicity: Elsevier; 2020. p. 241-74.
17. Xiong L, Yu H, Nie C, Xiao Y, Zeng Q, Wang G, et al. Size-controlled synthesis of Cu2O nanoparticles: size effect on antibacterial activity and application as a photocatalyst for highly efficient H2O2 evolution. RSC Advances. 2017;7(82):51822-30.
18. Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine. 2012;7:3527-35.
19. Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Applied Microbiology and Biotechnology. 2019;103(6):2773-82.
20. Peymanfar R, Azadi F. Preparation and identification of bare and capped CuFe2O4 nanoparticles using organic template and investigation of the size, magnetism, and polarization on their microwave characteristics. Nano-Structures & Nano-Objects. 2019;17:112-22.
21. Mirzaei A, Peymanfar R, Khodamoradipoor N. Investigation of size and medium effects on antimicrobial properties by CuCr2O4 nanoparticles and silicone rubber or PVDF. Materials Research Express. 2019;6(8):085412.
22. Peymanfar R, Rahmanisaghieh M. Preparation of neat and capped BaFe2O4 nanoparticles and investigation of morphology, magnetic, and polarization effects on its microwave and optical performance. Materials Research Express. 2018;5(10):105012.
23. Ghazvini M, Maddah H, Peymanfar R, Ahmadi MH, Kumar R. Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Physica A: Statistical Mechanics and its Applications. 2020;551:124127.
24. Peymanfar R, Azadi F. La-substituted into the CuFe2O4 nanostructure: a study on its magnetic, crystal, morphological, optical, and microwave features. Journal of Materials Science: Materials in Electronics. 2020;31(12):9586-94.
25. Peymanfar R, Javanshir S, Naimi-Jamal MR, Cheldavi A, Esmkhani M. Preparation and Characterization of MWCNT/Zn0.25Co0.75Fe2O4 Nanocomposite and Investigation of Its Microwave Absorption Properties at X-Band Frequency Using Silicone Rubber Polymeric Matrix. Journal of Electronic Materials. 2019;48(5):3086-95.
26. Peymanfar R, Afghahi SSS, Javanshir S. Preparation and Investigation of Structural, Magnetic, and Microwave Absorption Properties of a SrAl1.3Fe10.7O19/Multiwalled Carbon Nanotube Nanocomposite in X and Ku-Band Frequencies. Journal of Nanoscience and Nanotechnology. 2019;19(7):3911-8.
27. Ethiraj AS, Kang DJ. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale research letters. 2012;7(1):70-.
28. Zhao Z, Sakai S, Wu D, Chen Z, Zhu N, Huang C, et al. Further Exploration of Sucrose-Citric Acid Adhesive: Investigation of Optimal Hot-Pressing Conditions for Plywood and Curing Behavior. Polymers (Basel). 2019;11(12):1996.
29. Savi LK, Dias MCGC, Carpine D, Waszczynskyj N, Ribani RH, Haminiuk CWI. Natural deep eutectic solvents (NADES) based on citric acid and sucrose as a potential green technology: a comprehensive study of water inclusion and its effect on thermal, physical and rheological properties. International Journal of Food Science & Technology. 2018;54(3):898-907.
30. Ma Z, Zhang H, Yang Z, Zhang Y, Yu B, Liu Z. Highly mesoporous carbons derived from biomass feedstocks templated with eutectic salt ZnCl2/KCl. J Mater Chem A. 2014;2(45):19324-9.
31. Peymanfar R, Fazlalizadeh F. Microwave absorption performance of ZnAl2O4. Chemical Engineering Journal. 2020;402:126089.
32. Peymanfar R, Ramezanalizadeh H. Sol-gel assisted synthesis of CuCr2O4 nanoparticles: An efficient visible-light driven photocatalyst for the degradation of water pollutions. Optik. 2018;169:424-31.
33. Peymanfar R, Javanshir S, Naimi-Jamal MR, Cheldavi A. Preparation and identification of modified La0.8Sr0.2FeO3 nanoparticles and study of its microwave properties using silicone rubber or PVC. Materials Research Express. 2019;6(7):075004.
34. Peymanfar R, Norouzi F, Javanshir S. A novel approach to prepare one-pot Fe/PPy nanocomposite and evaluation of its microwave, magnetic, and optical performance. Materials Research Express. 2018;6(3):035024.
35. Peymanfar R, Javidan A, Selseleh‐Zakerin E. Preparation of modified SrAl 1.3 Fe 10.7 O 19 nanostructures and evaluation of size influence on its optical and magnetic properties. Micro & Nano Letters. 2020;15(11):759-63.
36. Acher O, Dubourg S. Generalization of Snoek’s law to ferromagnetic films and composites. Physical Review B. 2008;77(10).
37. Snoek JL. Gyromagnetic Resonance in Ferrites. Nature. 1947;160(4055):90-.
38. Delgado K, Quijada R, Palma R, Palza H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Letters in Applied Microbiology. 2011;53(1):50-4.
39. Yan J, Qian L, Gao W, Chen Y, Ouyang D, Chen M. Enhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar. Scientific reports. 2017;7:43051-.
40. Sun H-Q, Lu X-M, Gao P-J. The Exploration of the Antibacterial Mechanism of FE(3+) against Bacteria. Braz J Microbiol. 2011;42(1):410-4.