Enhancement of CO2/CH4 Adsorptive Selectivity by Functionalized Nano Zeolite

Document Type : Research Paper

Authors

1 Department of Chemistry, Kerman branch, Islamic Azad University, Kerman, Iran.

2 Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran.

Abstract

In this work, we have modified a synthesized Y-type zeolite (Si/Al = 2.5), with three different amines to investigate of the influence of adsorbent’s surface modification on CO2 selectivity over CH4. The pristine and amine-functionalized NaY zeolites were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), and N2 adsorption. The results showed that the structure of zeolite was preserved after amine modification. The adsorption capacity of CO2 and CH4 on these adsorbents was measured by the volumetric method at 298 K and 348 K. In comparison to CH4, CO2 was preferentially adsorbed on these adsorbents. the results demonstrated that incorporation of amines into zeolites structure improved significantly the selectivity towards carbon dioxide so that the optimal selectivity of CO2 over CH4 reached to 4.04 on zeolite modified with 2-methylaminoethanol at 348 K. Chemical interaction between adsorbate and sorbents as well as the steric effects were assessed to be the main reasons of high selective adsorption of carbon dioxide on amine-functionalized zeolites. Two of the most common adsorption models, the Langmuir and Sips isotherms, were used to correlate the experimental data of CO2 adsorption on the adsorbents The results revealed that the amine-functionalized NaY zeolites could be a good sorbent for use in flue and natural gas separation processes.

Keywords


  1. Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, et al. Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal. 2009;155(3):553-66.
  2. Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today. 2006;115(1-4):2-32.
  3. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, et al. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences. 2008;20(1):14-27.
  4. Cavenati S, Grande CA, Rodrigues AE. Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. Journal of Chemical & Engineering Data. 2004;49(4):1095-101.
  5. Huang HY, Yang RT, Chinn D, Munson CL. Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas. Industrial & Engineering Chemistry Research. 2003;42(12):2427-33.
  6. Singh P, Niederer JPM, Versteeg GF. Structure and activity relationships for amine based CO2 absorbents—I. International Journal of Greenhouse Gas Control. 2007;1(1):5-10.
  7. Singh P, Niederer JPM, Versteeg GF. Structure and activity relationships for amine-based CO2 absorbents-II. Chemical Engineering Research and Design. 2009;87(2):135-44.
  8. Wolsky AM, Daniels EJ, Jody BJ. CO2 Capture from the flue gas of conventional fossil-fuel-fired power plants. Environmental Progress. 1994;13(3):214-9.
  9. Zhang X, Zhang C-F, Qin S-J, Zheng Z-S. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. Industrial & Engineering Chemistry Research. 2001;40(17):3785-91.
  10. Rinker EB, Ashour SS, Sandall OC. Absorption of Carbon Dioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine. Industrial & Engineering Chemistry Research. 2000;39(11):4346-56.
  11. Hart A, Gnanendran N. Cryogenic CO2 capture in natural gas. Energy Procedia. 2009;1(1):697-706.
  12. Berstad D, Nekså P, Anantharaman R. Low-temperature CO2 Removal from Natural Gas. Energy Procedia. 2012;26:41-8.
  13. Scholes CA, Stevens GW, Kentish SE. Membrane gas separation applications in natural gas processing. Fuel. 2012;96:15-28.
  14. Yang RT. Gas separation by adsorption processes. Butterworth-Heinemann; 2013 Oct 22.
  15. 1.     35-Liu X, Yan Z, Wang H, Luo Y. In situ synthesis of NaY zeolite with coal-based kaolin. Journal of Natural Gas Chemistry. 2003;12(1):63-70.

 

  1. Keller GE. Pressure swing adsorption. By Douglas M. Ruthven, Shamsuzzaman Farooq, and Kent S. Knaebel, VCH Publishers, New York, 1994, 352+ xxiii pp.,$95.00. AIChE Journal. 1995;41(1):201-.
  2. Daud WMAW, Ahmad MA, Aroua MK. Carbon molecular sieves from palm shell: Effect of the benzene deposition times on gas separation properties. Separation and Purification Technology. 2007;57(2):289-93.
  3. Ducrot-Boisgontier C, Parmentier J, Faour A, Patarin Jl, Pirngruber GD. FAU-Type Zeolite Nanocasted Carbon Replicas for CO2Adsorption and Hydrogen Purification. Energy & Fuels. 2010;24(6):3595-602.
  4. Donald Carruthers J, Petruska MA, Sturm EA, Wilson SM. Molecular sieve carbons for CO2 capture. Microporous and Mesoporous Materials. 2012;154:62-7.
  5. Peng X, Wang W, Xue R, Shen Z. Adsorption separation of CH4/CO2 on mesocarbon microbeads: Experiment and modeling. AIChE Journal. 2006;52(3):994-1003.
  6. Siriwardane RV, Shen M-S, Fisher EP, Poston JA. Adsorption of CO2on Molecular Sieves and Activated Carbon. Energy & Fuels. 2001;15(2):279-84.
  7. Asadi T, Ehsani MR, Ribeiro AM, Loureiro JM, Rodrigues AE. CO2/CH4Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. Chemical Engineering & Technology. 2013;36(7):1231-9.
  8. Remy T, Peter SA, Van der Perre S, Valvekens P, De Vos DE, Baron GV, et al. Selective Dynamic CO2 Separations on Mg-MOF-74 at Low Pressures: A Detailed Comparison with 13X. The Journal of Physical Chemistry C. 2013;117(18):9301-10.
  9. Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews. 2009;38(5):1477.
  10. Li J-R, Sculley J, Zhou H-C. Metal–Organic Frameworks for Separations. Chemical Reviews. 2011;112(2):869-932.
  11. Yang Q, Zhong C. Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in Metal−Organic Frameworks. The Journal of Physical Chemistry B. 2006;110(36):17776-83.
  12. Gu X, Dong J, Nenoff TM. Synthesis of Defect-Free FAU-Type Zeolite Membranes and Separation for Dry and Moist CO2/N2Mixtures. Industrial & Engineering Chemistry Research. 2005;44(4):937-44.
  13. Hasegawa Y, Tanaka T, Watanabe K, Jeong B-H, Kusakabe K, Morooka S. Separation of co2-ch4 and co2-n2 systems using ion-exchanged fau-type zeolite membranes with different si/al ratios. Korean Journal of Chemical Engineering. 2002;19(2):309-13.
  14. Rad MD, Fatemi S, Mirfendereski SM. Development of T type zeolite for separation of CO2 from CH4 in adsorption processes. Chemical Engineering Research and Design. 2012;90(10):1687-95.
  15. Su F, Lu C, Kuo S-C, Zeng W. Adsorption of CO2on Amine-Functionalized Y-Type Zeolites. Energy & Fuels. 2010;24(2):1441-8.
  16. Nik OG, Nohair B, Kaliaguine S. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous and Mesoporous Materials. 2011;143(1):221-9.
  17. Saha D, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O, and N2on MOF-5, MOF-177, and Zeolite 5A. Environmental Science & Technology. 2010;44(5):1820-6.
  18. Babaei M, Anbia M, Kazemipour M. Synthesis of zeolite/carbon nanotube composite for gas separation. Canadian Journal of Chemistry. 2017;95(2):162-8.
  19. Babaei M, Salehi S, Anbia M, Kazemipour M. Improving CO2 Adsorption Capacity and CO2/CH4 Selectivity with Amine Functionalization of MIL-100 and MIL-101. Journal of Chemical & Engineering Data. 2018;63(5):1657-62.
  20. Faghihian H, Godazandeha N. Synthesis of nano crystalline zeolite Y from bentonite. Journal of Porous Materials. 2008;16(3):331-5.
  21. Liu H, Bao X, Wei W, Shi G. Synthesis and characterization of kaolin/NaY/MCM-41 composites. Microporous and Mesoporous Materials. 2003;66(1):117-25.
  22. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW. Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2Capture. Energy & Fuels. 2002;16(6):1463-9.
  23. Kim S, Ida J, Guliants VV, Lin YS. Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO2. The Journal of Physical Chemistry B. 2005;109(13):6287-93.
  24. Pawar RR, Patel HA, Sethia G, Bajaj HC. Selective adsorption of carbon dioxide over nitrogen on calcined synthetic hectorites with tailor-made porosity. Applied Clay Science. 2009;46(1):109-13.
  25. Garnier C, Finqueneisel G, Zimny T, Pokryszka Z, Lafortune S, Défossez PDC, et al. Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms. International Journal of Coal Geology. 2011;87(2):80-6.
  26. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal. 2010;156(1):2-10.
  27. Purna Chandra Rao G, Satyaveni S, Ramesh A, Seshaiah K, Murthy KSN, Choudary NV. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. Journal of Environmental Management. 2006;81(3):265-72.
  28. Fundamentals of Pure Component Adsorption Equilibria. Series on Chemical Engineering: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO.; 1998. p. 11-48.
  29. Chatti R, Bansiwal AK, Thote JA, Kumar V, Jadhav P, Lokhande SK, et al. Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous and Mesoporous Materials. 2009;121(1-3):84-9.
  30. Anbia M, Hoseini V, Mandegarzad S. Synthesis and characterization of nanocomposite MCM-48-PEHA-DEA and its application as CO2 adsorbent. Korean Journal of Chemical Engineering. 2012;29(12):1776-81.
  31. Xu X, Zhao X, Sun L, Liu X. Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. Journal of Natural Gas Chemistry. 2009;18(2):167-72.