Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Document Type: Research Paper

Authors

School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abstract

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current density of 45 mA g-1. The effects of calcination temperature on the initial discharge capacity of the electrode have also been investigated, The MnCo2O4 calcined at 650°C shows the higher initial discharge capacity due to the higher surface area (due to smaller particles) and weaker crystallinity. The influences of electrode porosities also have been studied, which suggest the electrochemical performance is determined by both the particle-to-particle contact and wettability of the electrode. An increase of the internal resistance of the electrode is observed with increasing electrode thickness (active material loading), which is the main factor responsible for the significant capacity loss for thicker electrode.

Keywords


  1. Goodenough JB, Kim Y. Challenges for Rechargeable Li Batteries†. Chemistry of Materials. 2010;22(3):587-603.
  2. Liu S, Hui KS, Hui KN. Back Cover: 1 D Hierarchical MnCo2O4Nanowire@MnO2Sheet Core-Shell Arrays on Graphite Paper as Superior Electrodes for Asymmetric Supercapacitors (ChemNanoMat 8/2015). ChemNanoMat. 2015;1(8):616-.
  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science. 2011;4(9):3243.
  4. Yuan L-X, Wang Z-H, Zhang W-X, Hu X-L, Chen J-T, Huang Y-H, et al. Development and challenges of LiFePO4cathode material for lithium-ion batteries. Energy Environ Sci. 2011;4(2):269-84.
  5. Mondal AK, Su D, Chen S, Ung A, Kim H-S, Wang G. Mesoporous MnCo2O4with a Flake-Like Structure as Advanced Electrode Materials for Lithium-Ion Batteries and Supercapacitors. Chemistry - A European Journal. 2014;21(4):1526-32.
  6. Winter M, Besenhard JO, Spahr ME, Novák P. Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials. 1998;10(10):725-63.
  7. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496-9.
  8. Reddy MV, Xu Y, Rajarajan V, Ouyang T, Chowdari BVR. Template Free Facile Molten Synthesis and Energy Storage Studies on MCo2O4 (M = Mg, Mn) as Anode for Li-Ion Batteries. ACS Sustainable Chemistry & Engineering. 2015;3(12):3035-42.
  9. Liu H, Bi Z, Sun X-G, Unocic RR, Paranthaman MP, Dai S, et al. Mesoporous TiO2-B Microspheres with Superior Rate Performance for Lithium Ion Batteries. Advanced Materials. 2011;23(30):3450-4.
  10. Rajagopalan B, Oh ES, Chung JS. The effect of diethylenetriamine on the solvothermal reactions of polyethyleneimine-graphene oxide/lithium titanate nanocomposites for lithium battery anode. Journal of Power Sources. 2015;275:702-11.
  11. Sun C, Li F, Ma C, Wang Y, Ren Y, Yang W, et al. Graphene–Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium–air batteries. J Mater Chem A. 2014;2(20):7188-96.
  12. Feng X, Liang Y, Zhi L, Thomas A, Wu D, Lieberwirth I, et al. Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor. Advanced Functional Materials. 2009;19(13):2125-9.
  13. An G-H, Ahn H-J. Carbon nanofiber/cobalt oxide nanopyramid core–shell nanowires for high-performance lithium-ion batteries. Journal of Power Sources. 2014;272:828-36.
  14. Jin Y, Wang L, Shang Y, Gao J, Li J, He X. Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries. Electrochimica Acta. 2015;151:109-17.
  15. Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H. Effect of the length and surface area on electrochemical performance of cobalt oxide nanowires for alkaline secondary battery application. Journal of Power Sources. 2014;272:703-10.
  16. Zhang J, Huang T, Yu A. Synthesis and effect of electrode heat-treatment on the superior lithium storage performance of Co 3 O 4 nanoparticles. Journal of Power Sources. 2015;273:894-903.
  17. Cheng JP, Chen X, Wu J-S, Liu F, Zhang XB, Dravid VP. Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes. CrystEngComm. 2012;14(20):6702.
  18. Wang K, Liu G, Hoivik N, Johannessen E, Jakobsen H. Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. Chem Soc Rev. 2014;43(5):1476-500.
  19. Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, et al. Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano. 2011;6(1):205-11.
  20. Brun N, Sakaushi K, Yu L, Giebeler L, Eckert J, Titirici MM. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Physical Chemistry Chemical Physics. 2013;15(16):6080.
  21. Datta MK, Maranchi J, Chung SJ, Epur R, Kadakia K, Jampani P, et al. Amorphous silicon–carbon based nano-scale thin film anode materials for lithium ion batteries. Electrochimica Acta. 2011;56(13):4717-23.
  22. Wang L, Yu Y, Chen PC, Zhang DW, Chen CH. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. Journal of Power Sources. 2008;183(2):717-23.
  23. Wang Z, Zhou L, David Lou XW. Metal Oxide Hollow Nanostructures for Lithium-ion Batteries. Advanced Materials. 2012;24(14):1903-11.
  24. Reddy MV, Kenrick KYH, Wei TY, Chong GY, Leong GH, Chowdari BVR. Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries. Journal of The Electrochemical Society. 2011;158(12):A1423.
  25. Reddy MV, Yu C, Jiahuan F, Loh KP, Chowdari BVR. Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4. RSC Advances. 2012;2(25):9619.
  26. Sharma Y, Sharma N, Subbarao G, Chowdari B. Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics. 2008;179(15-16):587-97.
  27. Cherian CT, Sundaramurthy J, Reddy MV, Suresh Kumar P, Mani K, Pliszka D, et al. Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material. ACS Applied Materials & Interfaces. 2013;5(20):9957-63.
  28. Hameed AS, Bahiraei H, Reddy MV, Shoushtari MZ, Vittal JJ, Ong CK, et al. Lithium Storage Properties of Pristine and (Mg, Cu) Codoped ZnFe2O4 Nanoparticles. ACS Applied Materials & Interfaces. 2014;6(13):10744-53.
  29. Reddy MV, Quan CY, Teo KW, Ho LJ, Chowdari BVR. Mixed Oxides, (Ni1–xZnx)Fe2O4 (x = 0, 0.25, 0.5, 0.75, 1): Molten Salt Synthesis, Characterization and Its Lithium-Storage Performance for Lithium Ion Batteries. The Journal of Physical Chemistry C. 2015;119(9):4709-18.
  30. Zhao J, Yang B, Zheng Z, Yang J, Yang Z, Zhang P, et al. Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe3O4 Nanoparticles and Its Application for Lithium-Ion Battery. ACS Applied Materials & Interfaces. 2014;6(12):9890-6.
  31. Yu L, Zhang L, Wu HB, Zhang G, Lou XW. Controlled synthesis of hierarchical CoxMn3−xO4array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ Sci. 2013;6(9):2664-71.
  32. Hwang SM, Kim SY, Kim J-G, Kim KJ, Lee J-W, Park M-S, et al. Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale. 2015;7(18):8351-5.
  33. Li G, Xu L, Zhai Y, Hou Y. Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. Journal of Materials Chemistry A. 2015;3(27):14298-306.
  34. Chen C, Liu B, Ru Q, Ma S, An B, Hou X, et al. Fabrication of cubic spinel MnCo 2 O 4 nanoparticles embedded in graphene sheets with their improved lithium-ion and sodium-ion storage properties. Journal of Power Sources. 2016;326:252-63.
  35. Liu Z, Battaglia V, Mukherjee PP. Mesoscale Elucidation of the Influence of Mixing Sequence in Electrode Processing. Langmuir. 2014;30(50):15102-13.
  36. Myung S-T, Cho MH, Hong HT, Kang TH, Kim C-S. Electrochemical evaluation of mixed oxide electrode for Li-ion secondary batteries: Li1.1Mn1.9O4 and LiNi0.8Co0.15Al0.05O2. Journal of Power Sources. 2005;146(1-2):222-5.
  37. Etacheri V, Yourey JE, Bartlett BM. Chemically Bonded TiO2–Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries. ACS Nano. 2014;8(2):1491-9.
  38. Thomas KE, Sloop SE, Kerr JB, Newman J. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. Journal of Power Sources. 2000;89(2):132-8.
  39. Chen YH, Wang CW, Zhang X, Sastry AM. Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials. Journal of Power Sources. 2010;195(9):2851-62.
  40. Sheu SP, Yao CY, Chen JM, Chiou YC. Influence of the LiCoO2 particle size on the performance of lithium-ion batteries. Journal of Power Sources. 1997;68(2):533-5.
  41. Wang C-W, Sastry AM. Mesoscale Modeling of a Li-Ion Polymer Cell. Journal of The Electrochemical Society. 2007;154(11):A1035.
  42. Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, et al. Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy. 2014;4:23-30.
  43. Srinivasan V, Newman J. Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell. Journal of The Electrochemical Society. 2004;151(10):A1530.
  44. Dorri M, Zamani C, Babaei A. An investigation on the effect of deposition parameters on nanostructured electrode of lithium ion batteries and their performance. Author(s); 2018.
  45. Liu G, Zheng H, Kim S, Deng Y, Minor AM, Song X, et al. Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode. Journal of The Electrochemical Society. 2008;155(12):A887.
  46. Padmanathan N, Selladurai S. Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics. 2013;20(4):479-87.
  47. Wilson AJC. Elements of X-ray Diffraction by B. D. Cullity. Acta Crystallographica. 1957;10(1):88-.
  48. Jadhav HS, Rai AK, Lee JY, Kim J, Park C-J. Enhanced electrochemical performance of flower-like Co 3 O 4 as an anode material for high performance lithium-ion batteries. Electrochimica Acta. 2014;146:270-7.
  49. Liu W, Lu C, Wang X, Liang K, Tay BK. In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. Journal of Materials Chemistry A. 2015;3(2):624-33.
  50. Yue J, Gu X, Chen L, Wang N, Jiang X, Xu H, et al. General synthesis of hollow MnO2, Mn3O4and MnO nanospheres as superior anode materials for lithium ion batteries. J Mater Chem A. 2014;2(41):17421-6.
  51. Zhu X, Song X, Ma X, Ning G. Enhanced Electrode Performance of Fe2O3 Nanoparticle-Decorated Nanomesh Graphene As Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2014;6(10):7189-97.
  52. Zheng H, Liu G, Song X, Ridgway P, Xun S, Battaglia VS. Cathode Performance as a Function of Inactive Material and Void Fractions. Journal of The Electrochemical Society. 2010;157(10):A1060.
  53. Zheng H, Tan L, Liu G, Song X, Battaglia VS. Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode. Journal of Power Sources. 2012;208:52-7.
  54. Zheng H, Li J, Song X, Liu G, Battaglia VS. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochimica Acta. 2012;71:258-65.
  55. Li J, Xiong S, Li X, Qian Y. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale. 2013;5(5):2045.
  56. Zhou S, Luo X, Chen L, Xu C, Yan D. MnCo2O4 nanospheres for improved lithium storage performance. Ceramics International. 2018;44(15):17858-63.
  57. Li J, Wang J, Liang X, Zhang Z, Liu H, Qian Y, et al. Hollow MnCo2O4 Submicrospheres with Multilevel Interiors: From Mesoporous Spheres to Yolk-in-Double-Shell Structures. ACS Applied Materials & Interfaces. 2013;6(1):24-30.