Synthesis and characterization of porous zinc oxide nano-flakes film in alkaline media

Document Type: Research Paper


1 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 School of Materials Science & Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia


In this study, porous zinc oxide nano-flakes were successfully synthesized by anodization method on zinc substrate in a 0.025 M NaOH and 0.05 M NH4Cl solution with the voltage of 10 V at room temperature. The field emission scanning electron microscopy’s (FESEM) images show the structural evolution during 90 min of the anodization process. They also demonstrate the dependency of growth of ZnO flakes on the grains of the zinc substrate. Regarding FESEM images and possible chemical reactions taking place during the anodization process, a growth mechanism and sequences for the formation of ZnO have proposed. The Pourbaix diagram also confirmed this possible mechanism. The elemental  and phase analysis conducted on films proved the formation of the ZnO after the anodization process. The cyclic voltammetry showed the oxidation of zinc into zinc oxide is related to the -1.28 V peak and the peak of zinc oxide reduction is situated at -1.48 V.  The band gap of anodized zinc foil was calculated to be 3.24 eV. The photocatalytic activity of synthesized thin films also was studied and the ImageJ software analysis showed a strong correlation between the photocatalytic activity and the portion of porosity in the synthesized films.


1. Look DC, Claflin B, Alivov YI, Park SJ. The future of ZnO light emitters. physica status solidi (a). 2004;201(10):2203-12.

2. Zhang Q, Dandeneau CS, Zhou X, Cao G. ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials. 2009;21(41):4087-108.

3. Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A: Chemistry. 2004;162(2-3):317-22.

4. Xiao F, Wang F, Fu X, Zheng Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry. 2012;22(7):2868.

5. Katwal G, Paulose M, Rusakova IA, Martinez JE, Varghese OK. Rapid Growth of Zinc Oxide Nanotube–Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection. Nano Letters. 2016;16(5):3014-21.

6. Di Paola A, García-López E, Marcì G, Palmisano L. A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials. 2012;211-212:3-29.

7. Miyauchi M, Nakajima A, Watanabe T, Hashimoto K. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. Chemistry of Materials. 2002;14(6):2812-6.

8. Kandavelu V, Kastien H, Thampi KR. Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. Applied Catalysis B: Environmental. 2004;48(2):101-11.

9. Abdel Aal A, Mahmoud SA, Aboul-Gheit AK. Sol–Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol. Nanoscale Research Letters. 2009;4(7):627-34.

10. Neppolian B, Sakthivel S, Arabindoo B, Palanichamy M, Murugesan V. Degradation of textile dye by solar light using TiO2and ZnO photocatalysts. Journal of Environmental Science and Health, Part A. 1999;34(9):1829-38.

11. Li Y, Xie W, Hu X, Shen G, Zhou X, Xiang Y, et al. Comparison of Dye Photodegradation and its Coupling with Light-to-Electricity Conversion over TiO2and ZnO. Langmuir. 2010;26(1):591-7.

12. de Jongh PE, Meulenkamp EA, Vanmaekelbergh D, Kelly JJ. Charge Carrier Dynamics in Illuminated, Particulate ZnO Electrodes. The Journal of Physical Chemistry B. 2000;104(32):7686-93.

13. Hu Z, Chen Q, Li Z, Yu Y, Peng L-M. Large-Scale and Rapid Synthesis of Ultralong ZnO Nanowire Films via Anodization. The Journal of Physical Chemistry C. 2009;114(2):881-9.

14. Moghaddam J, Mollaesmail S, Karimi S. The Influence of Morphology on Photo-catalytic Activity and Optical Properties of Nanocrystalline ZnO Powder. Nano-Micro Letters. 2012;4(4):197-201.

15. He S, Zheng M, Yao L, Yuan X, Li M, Ma L, et al. Preparation and properties of ZnO nanostructures by electrochemical anodization method. Applied Surface Science. 2010;256(8):2557-62.

16. Ye C, Bando Y, Shen G, Golberg D. Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets. The Journal of Physical Chemistry B. 2006;110(31):15146-51.

17. Tian ZR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, et al. Complex and oriented ZnO nanostructures. Nature Materials. 2003;2(12):821-6.

18. Peulon S. Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions. Journal of The Electrochemical Society. 1998;145(3):864.

19. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, et al. Controlled Growth of ZnO Nanowires and Their Optical Properties. Advanced Functional Materials. 2002;12(5):323.

20. Ellmer K, Wendt R. D.c. and r.f. (reactive) magnetron sputtering of ZnO:Al films from metallic and ceramic targets: a comparative study. Surface and Coatings Technology. 1997;93(1):21-6.

21. Kaneva N, Stambolova I, Blaskov V, Dimitriev Y, Vassilev S, Dushkin C. Photocatalytic activity of nanostructured ZnO films prepared by two different methods for the photoinitiated decolorization of malachite green. Journal of Alloys and Compounds. 2010;500(2):252-8.

22. Goux A, Pauporté T, Chivot J, Lincot D. Temperature effects on ZnO electrodeposition. Electrochimica Acta. 2005;50(11):2239-48.

23. Goh HS, Adnan R, Farrukh MA. ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange. Turkish Journal of Chemistry. 2011 Jun 7;35(3):375-91.

24. Wang H-J, Sun Y-Y, Cao Y, Yu X-H, Ji X-M, Yang L. Porous zinc oxide films: Controlled synthesis, cytotoxicity and photocatalytic activity. Chemical Engineering Journal. 2011;178:8-14.

25. Yamaguchi Y, Yamazaki M, Yoshihara S, Shirakashi T. Photocatalytic ZnO films prepared by anodizing. Journal of Electroanalytical Chemistry. 1998;442(1-2):1-3.

26. Voon CH, Lim BY, Hashim U, Md Arshad MK, Sam ST, Foo KL, et al. Effect of Temperature of Distilled Water on the Morphology of Nanoporous Zinc Oxide Synthesized by Anodizing. Applied Mechanics and Materials. 2015;754-755:1131-5.

27. Xiao F-X, Zeng Z, Liu B. Bridging the Gap: Electron Relay and Plasmonic Sensitization of Metal Nanocrystals for Metal Clusters. Journal of the American Chemical Society. 2015;137(33):10735-44.

28. Xiao F. Self-assembly preparation of gold nanoparticles-TiO2 nanotube arrays binary hybrid nanocomposites for photocatalytic applications. Journal of Materials Chemistry. 2012;22(16):7819.

29. Xiao F. An efficient layer-by-layer self-assembly of metal-TiO2 nanoring/nanotube heterostructures, M/T-NRNT (M = Au, Ag, Pt), for versatile catalytic applications. Chemical Communications. 2012;48(52):6538.

30. Xiao F. Layer-by-Layer Self-Assembly Construction of Highly Ordered Metal-TiO2 Nanotube Arrays Heterostructures (M/TNTs, M = Au, Ag, Pt) with Tunable Catalytic Activities. The Journal of Physical Chemistry C. 2012;116(31):16487-98.

31. Masuda H, Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science. 1995;268(5216):1466-8.

32. Liu R, Yang W-D, Qiang L-S, Wu J-F. Fabrication of TiO2 nanotube arrays by electrochemical anodization in an NH4F/H3PO4 electrolyte. Thin Solid Films. 2011;519(19):6459-66.

33. Basu PK, Saha N, Maji S, Saha H, Basu S. Nanoporous ZnO thin films deposited by electrochemical anodization: effect of UV light. Journal of Materials Science: Materials in Electronics. 2008;19(6):493-9.

34. Gilani S, Ghorbanpour M, Parchehbaf Jadid A. Antibacterial activity of ZnO films prepared by anodizing. Journal of Nanostructure in Chemistry. 2016;6(2):183-9.

35. Huang M-C, Wang T, Wu B-J, Lin J-C, Wu C-C. Anodized ZnO nanostructures for photoelectrochemical water splitting. Applied Surface Science. 2016;360:442-50.

36. Ni G, Chen Y, Liu Y, Liu H, Zhang Z. Fabrication of ZnO Nanoparticles for Photocatalytic Reduction of CO2. MATEC Web of Conferences. 2016;67:02009.

37. Lupan O, Pauporté T, Chow L, Viana B, Pellé F, Ono LK, et al. Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Applied Surface Science. 2010;256(6):1895-907.

38. National Institutes of Health (NIH), ImageJ: Image Processing and Analysis Java software (Version 1.51). Available from

39. Toward Functional Nanomaterials. Springer US; 2009.

40. Jagadish C, Pearton SJ, editors. Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier; 2011 Oct 10.

41. Look DC, Claflin B, Alivov YI, Park SJ. The future of ZnO light emitters. physica status solidi (a). 2004;201(10):2203-12.

42. Ismail A, Abdullah MJ. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. Journal of King Saud University - Science. 2013;25(3):209-15.

43. Patil GE, Kajale DD, Gaikwad VB, Jain GH. Preparation and characterization of SnO2 nanoparticles by hydrothermal route. International Nano Letters. 2012;2(1).

44. Murphy A. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells. 2007;91(14):1326-37.

45. Morales AE, Mora ES, Pal U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista mexicana de física. 2007;53(5):18-22.

46. Zhu H, Yang D, Yu G, Zhang H, Yao K. A simple hydrothermal route for synthesizing SnO2 quantum dots. Nanotechnology. 2006;17(9):2386-9.

47. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews. 1995;95(1):69-96.