• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of Ultrafine Grained and Nanostructured Materials
Articles in Press
Current Issue
Journal Archive
Volume Volume 50 (2017)
Issue Issue 2
December 2017, Page 81-160
Issue Issue 1
June 2017, Page 1-80
Volume Volume 49 (2016)
Volume Volume 48 (2015)
Volume Volume 47 (2014)
Volume Volume 46 (2013)
Volume Volume 45 (2012)
Agbolaghi, S., Zenoozi, S., Abbaspoor, S., Nazari, M. (2017). Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline. Journal of Ultrafine Grained and Nanostructured Materials, 50(2), 137-151. doi: 10.22059/jufgnsm.2017.02.09
Samira Agbolaghi; Sahar Zenoozi; Saleheh Abbaspoor; Maryam Nazari. "Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline". Journal of Ultrafine Grained and Nanostructured Materials, 50, 2, 2017, 137-151. doi: 10.22059/jufgnsm.2017.02.09
Agbolaghi, S., Zenoozi, S., Abbaspoor, S., Nazari, M. (2017). 'Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline', Journal of Ultrafine Grained and Nanostructured Materials, 50(2), pp. 137-151. doi: 10.22059/jufgnsm.2017.02.09
Agbolaghi, S., Zenoozi, S., Abbaspoor, S., Nazari, M. Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline. Journal of Ultrafine Grained and Nanostructured Materials, 2017; 50(2): 137-151. doi: 10.22059/jufgnsm.2017.02.09

Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol), Poly(3-hexyl thiophene) and Polyaniline

Article 9, Volume 50, Issue 2, December 2017, Page 137-151  XML PDF (1704 K)
Document Type: Research Paper
DOI: 10.22059/jufgnsm.2017.02.09
Authors
Samira Agbolaghi 1; Sahar Zenoozi2; Saleheh Abbaspoor2; Maryam Nazari3
1Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
2Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran.
3Department of Chemistry, University of Calgary, Calgary, Canada
Abstract
Two types of rod-coil block copolymers including poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) and PEG-block-polyaniline (PANI) were synthesized using Grignard metathesis polymerization, Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-seeding methodology to investigate the coily and rod blocks in grafted brushes and ordered crystalline configurations. The conductive P3HT fibrillar single crystals covered by the dielectric coily PEG oligomers were grown from toluene, xylene, and anisole, and characterized by atomic force microscopy (AFM) and grazing wide angle X-ray scattering (GIWAXS). Longer P3HT backbones resulted in folding, whereas shorter ones had a high tendency towards backbone lamination. The effective factors on folding of long P3HT backbones in the single crystal structures were the solvent quality and crystallization temperature. Better solvents due to decelerating the growth condition led to a higher number of foldings. Via increasing the crystallization temperature, the system decreased the folding number to maintain its stability. Poorer solvents also reflected a higher stacking in hexyl side chain and π-π stacking directions. The dielectric lamellar PEG single crystals sandwiched between the PANI nanorods were grown from amyl acetate, and analyzed using the interface distribution function (IDF) of SAXS and AFM. The molecular weights of PANI and PEG blocks and crystallization temperature were focused while studying the grown single crystals.
Keywords
P3HT; PEG; PANI; single crystal; self-seeding; GIWAXS; SAXS
References
1. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chemical Reviews. 2015;115(23):12666-731.

2. Kim JS, Lee JH, Park JH, Shim C, Sim M, Cho K. High-Efficiency Organic Solar Cells Based on Preformed Poly(3-hexylthiophene) Nanowires. Advanced Functional Materials. 2010;21(3):480-6.

3. Kim J-H, Park JH, Lee JH, Kim JS, Sim M, Shim C, et al. Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization. Journal of Materials Chemistry. 2010;20(35):7398.

4. Kim M, Jo SB, Park JH, Cho K. Flexible lateral organic solar cells with core–shell structured organic nanofibers. Nano Energy. 2015;18:97-108.

5. Liu F, Chen D, Wang C, Luo K, Gu W, Briseno AL, et al. Molecular Weight Dependence of the Morphology in P3HT:PCBM Solar Cells. ACS Applied Materials & Interfaces. 2014;6(22):19876-87.

6. Bruner C, Novoa F, Dupont S, Dauskardt R. Decohesion Kinetics in Polymer Organic Solar Cells. ACS Applied Materials & Interfaces. 2014;6(23):21474-83.

7. Agbolaghi S, Abbasi F, Gheybi H. High efficient and stabilized photovoltaics via morphology manipulating in active layer by rod-coil block copolymers comprising different hydrophilic to hydrophobic dielectric blocks. European Polymer Journal. 2016;84:465-80.

8. Agbolaghi S, Nazari M, Zenoozi S, Abbasi F. The highest power conversion efficiencies in poly(3-hexylthiophene)/fullerene photovoltaic cells modified by rod-coil block copolymers under different annealing conditions. Journal of Materials Science: Materials in Electronics. 2017;28(14):10611-24.

9. Agbolaghi S, Abbasi F, Zenoozi S, Nazari M. Annealing-free multi-thermal techniques comprising aging, cycling and seeding to enhance performance of thick P3HT:PCBM photovoltaic cells via developing hairy crystals. Materials Science in Semiconductor Processing. 2017;63:285-94.

10. Zenoozi S, Agbolaghi S, Poormahdi E, Hashemzadeh-Gargari M, Mahmoudi M. Verification of Scherrer formula for well-shaped poly(3-hexylthiophene)-based conductive single crystals and nanofibers and fabrication of photovoltaic devices from thin film coating. Macromolecular Research. 2017;25(8):826-40.

11. Agbolaghi S, Ebrahimi S, Massoumi B, Abbaspoor S, Sarvari R, Abbasi F. Enhanced properties of photovoltaic devices tailored with novel supramolecular structures based on reduced graphene oxide nanosheets grafted/functionalized with thiophenic materials. Journal of Polymer Science Part B: Polymer Physics. 2017;55(24):1877-89.

12. Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters. 1996;69(26):4108-10.

13. Yu X, Xiao K, Chen J, Lavrik NV, Hong K, Sumpter BG, et al. High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers. ACS Nano. 2011;5(5):3559-67.

14. Liu H, Reccius CH, Craighead HG. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Applied Physics Letters. 2005;87(25):253106.

15. Lee J-Y, Lin C-J, Lo C-T, Tsai J-C, Chen W-C. Synthesis, Morphology, and Field-Effect Transistor Characteristics of Crystalline Diblock Copolymers Consisted of Poly(3-hexylthiophene) and Syndiotactic Polypropylene. Macromolecules. 2013;46(8):3005-14.

16. Lim JA, Kim J-H, Qiu L, Lee WH, Lee HS, Kwak D, et al. Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers. Advanced Functional Materials. 2010;20(19):3292-7.

17. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347(6293):539-41.

18. Thomas SW, Joly GD, Swager TM. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews. 2007;107(4):1339-86.

19. Qiu L, Lee WH, Wang X, Kim JS, Lim JA, Kwak D, et al. Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Advanced Materials. 2009;21(13):1349-53.

20. Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch FPV, et al. Controllable Processes for Generating Large Single Crystals of Poly(3-hexylthiophene). Angewandte Chemie International Edition. 2012;51(44):11131-5.

21. Hourani W, Rahimi K, Botiz I, Vinzenz Koch FP, Reiter G, Lienerth P, et al. Anisotropic charge transport in large single crystals of π-conjugated organic molecules. Nanoscale. 2014;6(9):4774.

22. Dong H, Jiang S, Jiang L, Liu Y, Li H, Hu W, et al. Nanowire Crystals of a Rigid Rod Conjugated Polymer. Journal of the American Chemical Society. 2009;131(47):17315-20.

23. Goto H, Okamoto Y, Yashima E. Solvent-Induced Chiroptical Changes in Supramolecular Assemblies of an Optically Active, Regioregular Polythiophene. Macromolecules. 2002;35(12):4590-601.

24. Kim DH, Han JT, Park YD, Jang Y, Cho JH, Hwang M, et al. Single-Crystal Polythiophene Microwires Grown by Self-Assembly. Advanced Materials. 2006;18(6):719-23.

25. Ma Z, Geng Y, Yan D. Extended-chain lamellar packing of poly(3-butylthiophene) in single crystals. Polymer. 2007;48(1):31-4.

26. Kim DH, Park YD, Jang Y, Yang H, Kim YH, Han JI, et al. Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors. Advanced Functional Materials. 2005;15(1):77-82.

27. Kim DH, Park YD, Jang Y, Kim S, Cho K. Solvent Vapor-Induced Nanowire Formation in Poly(3-hexylthiophene) Thin Films. Macromolecular Rapid Communications. 2005;26(10):834-9.

28. Kovacs AJ, Gonthier A. Crystallization and fusion of self-seeded polymers. Aktuelle Probleme der Polymer-Physik III: Steinkopff; 1972. p. 24-.

29. Massa MV, Lee MSM, Dalnoki-Veress K. Crystal nucleation of polymers confined to droplets: Memory effects. Journal of Polymer Science Part B: Polymer Physics. 2005;43(23):3438-43.

30. Maus A, Hempel E, Thurn-Albrecht T, Saalwächter K. Memory effect in isothermal crystallization of syndiotactic polypropylene --Role of melt structure and dynamics? The European Physical Journal E. 2007;23(1):91-101.

31. Agbolaghi S, Zenoozi S, Hosseini Z, Abbasi F. Scrolled/Flat Crystalline Structures of Poly(3-hexylthiophene) and Poly(ethylene glycol) Block Copolymers Subsuming Unseeded Half-Ring-Like and Seeded Cubic, Epitaxial, and Fibrillar Crystals. Macromolecules. 2016;49(24):9531-41.

32. Zenoozi S, Agbolaghi S, Nazari M, Abbasi F. Thermal and optical properties of nano/micro single crystals and nanofibers obtained from semiconductive-dielectric poly(3-hexylthiophene) block copolymers. Materials Science in Semiconductor Processing. 2017;64:85-94.

33. Xiao X, Hu Z, Wang Z, He T. Study on the Single Crystals of Poly(3-octylthiophene) Induced by Solvent-Vapor Annealing. The Journal of Physical Chemistry B. 2009;113(44):14604-10.

34. Xiao X, Wang Z, Hu Z, He T. Single Crystals of Polythiophene with Different Molecular Conformations Obtained by Tetrahydrofuran Vapor Annealing and Controlling Solvent Evaporation. The Journal of Physical Chemistry B. 2010;114(22):7452-60.

35. Rahimi K, Botiz I, Agumba JO, Motamen S, Stingelin N, Reiter G. Light absorption of poly(3-hexylthiophene) single crystals. RSC Adv. 2014;4(22):11121-3.

36. Ihn KJ, Moulton J, Smith P. Whiskers of poly(3-alkylthiophene)s. Journal of Polymer Science Part B: Polymer Physics. 1993;31(6):735-42.

37. Liu J, Sun Y, Gao X, Xing R, Zheng L, Wu S, et al. Oriented Poly(3-hexylthiophene) Nanofibril with the π−π Stacking Growth Direction by Solvent Directional Evaporation. Langmuir. 2011;27(7):4212-9.

38. Oh JY, Shin M, Lee TI, Jang WS, Min Y, Myoung J-M, et al. Self-Seeded Growth of Poly(3-hexylthiophene) (P3HT) Nanofibrils by a Cycle of Cooling and Heating in Solutions. Macromolecules. 2012;45(18):7504-13.

39. Yu Z, Yan H, Lu K, Zhang Y, Wei Z. Self-assembly of two-dimensional nanostructures of linear regioregular poly(3-hexylthiophene). RSC Adv. 2012;2(1):338-43.

40. Pramanik S, Karak N, Banerjee S, Kumar A. Effects of solvent interactions on the structure and properties of prepared PAni nanofibers. Journal of Applied Polymer Science. 2012;126(3):830-6.

41. Sapurina I, Osadchev AY, Volchek BZ, Trchová M, Riede A, Stejskal J. In-situ polymerized polyaniline films. Synthetic Metals. 2002;129(1):29-37.

42. Wang J, Torardi CC, Duch MW. Polyaniline-related ion-barrier anticorrosion coatings. Synthetic Metals. 2007;157(21):851-8.

43. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG. Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. Journal of Power Sources. 2007;163(2):1105-9.

44. Li X-G, Feng H, Huang M-R, Gu G-L, Moloney MG. Ultrasensitive Pb(II) Potentiometric Sensor Based on Copolyaniline Nanoparticles in a Plasticizer-Free Membrane with a Long Lifetime. Analytical Chemistry. 2011;84(1):134-40.

45. Huang J, Virji S, Weiller BH, Kaner RB. Nanostructured Polyaniline Sensors. Chemistry - A European Journal. 2004;10(6):1314-9.

46. Huang J. Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry. 2006;78(1).

47. Joo J, Epstein AJ. Electromagnetic radiation shielding by intrinsically conducting polymers. Applied Physics Letters. 1994;65(18):2278-80.

48. Guan H, Fan L-Z, Zhang H, Qu X. Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochimica Acta. 2010;56(2):964-8.

49. Xu H, Li X, Wang G. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. Journal of Power Sources. 2015;294:16-21.

50. Liu S, Wang L, Luo Y, Tian J, Li H, Sun X. Polyaniline nanofibres for fluorescent nucleic acid detection. Nanoscale. 2011;3(3):967.

51. Agbolaghi S, Nazari M, Abbaspoor S, Gheybi H, Abbasi F. Micro/nano conductive-dielectric channels designed by poly(ethylene glycol) single crystals covered by polyaniline nanofibers. Polymer. 2016;92:264-72.

52. Agbolaghi S, Nazari M, Abbaspoor S, Gheybi H, Abbasi F. Characterization of novel extremely extended regime in conductive rod-like polyaniline nanobrush-covered poly(ethylene glycol) single crystals. European Polymer Journal. 2016;82:196-207.

53. Abbaspoor S, Abbasi F, Agbolaghi S. A novel approach to prepare polymer mixed-brushes via single crystal surface patterning. RSC Adv. 2014;4(33):17071-82.

54. Agbolaghi S, Alizadeh-Osgouei M, Abbaspoor S, Abbasi F. Self-assembling nano mixed-brushes having co-continuous surface morphology by melt growing single crystals and comparison with solution patterned leopard-skin surface morphology. RSC Advances. 2015;5(2):1538-48.

55. Nazari M, Agbolaghi S, Abbaspoor S, Gheybi H, Abbasi F. Arrangement of Conductive Rod Nanobrushes via Conductive–Dielectric–Conductive Sandwiched Single Crystals of Poly(ethylene glycol) and Polyaniline Block Copolymers. Macromolecules. 2015;48(24):8947-57.

56. Agbolaghi S, Abbasi F, Abbaspoor S, Alizadeh-Osgouei M. Self-designed surfaces via single-co-crystallization of homopolymer and diblock copolymers in various growth conditions. European Polymer Journal. 2015;66:108-18.

57. Agbolaghi S, Abbasi F, Abbaspoor S. Epitaxial single crystal surface patterning and study of physical and chemical environmental effects on crystal growth. Colloid and Polymer Science. 2014;292(6):1375-83.

58. Alizadeh-Osgouei M, Agbolaghi S, Abbaspoor S, Abbasi F. A subtle insight into nano-convergence of substrate thickness in melt-grown single-co-crystals. Colloid and Polymer Science. 2016;294(5):869-78.

59. Agbolaghi S, Abbasi F, Abbaspoor S. Preparation of polymer brushes via growth of single crystals of poly(ethylene glycol)-block-polystyrene diblock copolymers synthesized by ATRP and studying the crystal lateral size and brush tethering density. Polymer Bulletin. 2014;71(12):3177-96.

60. Abbaspoor S, Abbasi F, Agbolaghi S. Effects of various polymer brushes on the crystallization of poly(ethylene glycol) in poly(ethylene glycol)-b-polystyrene and poly(ethylene glycol)-b-poly(methyl methacrylate) single crystals. Journal of Polymer Research. 2014;21(8).

61. Abbaspoor S, Agbolaghi S, Abbasi F. Development of nano-channel single crystals and verification of their structures by small angle X-ray scattering. Polymer Bulletin. 2016;74(4):1103-19.

62. Agbolaghi S, Abbasi F, Jalili K. Nascent lateral habits of solution crystallization of poly(ethylene glycol)-block-polystyrene diblock copolymers. Journal of Polymer Research. 2014;21(4).

63. : American Chemical Society (ACS).

64. Lohwasser RH, Thelakkat M. Toward Perfect Control of End Groups and Polydispersity in Poly(3-hexylthiophene) via Catalyst Transfer Polymerization. Macromolecules. 2011;44(9):3388-97.

65. Li F, Shi Y, Yuan K, Chen Y. Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance. New J Chem. 2013;37(1):195-203.

66. Kim JY, Frisbie CD. Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends. The Journal of Physical Chemistry C. 2008;112(45):17726-36.

 

Statistics
Article View: 194
PDF Download: 152
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

 

open access Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal Management System. Designed by sinaweb.