• Home
  • Submit
  • Publication Ethics and Malpractice Statement
  • Peer Review Process
  • Guide for Authors
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Ultrafine Grained and Nanostructured  Materials
Articles in Press
Current Issue
Journal Archive
Volume Volume 52 (2019)
Volume Volume 51 (2018)
Volume Volume 50 (2017)
Issue Issue 2
December 2017, Page 81-160
Issue Issue 1
June 2017, Page 1-80
Volume Volume 49 (2016)
Volume Volume 48 (2015)
Volume Volume 47 (2014)
Volume Volume 46 (2013)
Volume Volume 45 (2012)
Shahjuee, T., Masoudpanah, S., Mirkazemi, S. (2017). Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia. Journal of Ultrafine Grained and Nanostructured Materials, 50(2), 105-110. doi: 10.22059/JUFGNSM.2017.02.04
Tahereh Shahjuee; Seyyed Morteza Masoudpanah; Seyed Mohammad Mirkazemi. "Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia". Journal of Ultrafine Grained and Nanostructured Materials, 50, 2, 2017, 105-110. doi: 10.22059/JUFGNSM.2017.02.04
Shahjuee, T., Masoudpanah, S., Mirkazemi, S. (2017). 'Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia', Journal of Ultrafine Grained and Nanostructured Materials, 50(2), pp. 105-110. doi: 10.22059/JUFGNSM.2017.02.04
Shahjuee, T., Masoudpanah, S., Mirkazemi, S. Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia. Journal of Ultrafine Grained and Nanostructured Materials, 2017; 50(2): 105-110. doi: 10.22059/JUFGNSM.2017.02.04

Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia

Article 4, Volume 50, Issue 2, December 2017, Page 105-110  XML PDF (661.04 K)
Document Type: Research Paper
DOI: 10.22059/JUFGNSM.2017.02.04
Authors
Tahereh Shahjuee; Seyyed Morteza Masoudpanah email ; Seyed Mohammad Mirkazemi
School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
Abstract
Cobalt ferrite (CoFe2 O4 ) nanoparticles have attracted significantly attentions for spintronics, recording media and bioapplications due to their unique magnetic and chemical properties. In this work, single phase CoFe2 O4 nanoparticles were synthesized at various coprecipitation temperatures (60, 80 and 90 °C) without post calcination. The effects of oleic acid as surfactant on the microstructure, magnetic properties and heating rate were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy and vibrating sample magnetometry techniques. The small particle size and narrow size distribution were achieved using oleic acid. IR spectra showed the oleic acid molecules adsorbed on particle surface, leading to the lower growth rate and then the smaller nanoparticles. The CoFe2 O4 nanoparticles showed ferromagnetic behavior. The highest saturation magnetization of 45 emu/g and coercivity of 950 Oe were achieved at the coprecipitation temperature of 80 °C without using oleic acid. However, the saturation magnetization increased from 8 to 37 emu/g with the coprecipitation temperature due to the increase of crystallinity and particle size. The coprecipitated CoFe2 O4 nanoparticles at 80 °C exhibited the AC heating temperature of 7.5°C and specific loss power of 18.3 W/g under magnetic field of 100 Oe and frequency of 200 kHz. The heat generation mechanism was attributed to the hysteresis loss.
Keywords
CoFe2O4; Coprecipitation, Magnetic properties, Hyperthermia
References
1. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. ChemInform Abstract: Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. ChemInform. 2008;39(35).

2. Saxena N, Singh M. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications. Journal of Magnetism and Magnetic Materials. 2017;429:166-76.

3. Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials. 2012;324(6):903-15.

4. Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, Davaran S. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology. 2016;45(1):6-17.

5. Liébana-Viñas S, Simeonidis K, Wiedwald U, Li ZA, Ma Z, Myrovali E, et al. Optimum nanoscale design in ferrite based nanoparticles for magnetic particle hyperthermia. RSC Adv. 2016;6(77):72918-25.

6. Salehpour F, Khorramdin A, Shokrollahi H, Pezeshki A, Mirzaei F, Nader ND. Synthesis of Zn-Doped Manganese Ferrite Nanoparticles Via Coprecipitation Method for Magnetic Resonance Imaging Contrast Agent. Journal of Nanotechnology in Engineering and Medicine. 2014;5(4):041002.

7. Sickafus KE, Wills JM, Grimes NW. Structure of Spinel. Journal of the American Ceramic Society. 2004;82(12):3279-92.

8. A. Goldman, Modem Ferrite Technology, 2 ed., Springer, Pittsburgh, PA, USA, 2006.

9. Valenzuela R. Magnetic ceramics: Cambridge University Press; 1994.

10. Cruz MM, Ferreira LP, Ramos J, Mendo SG, Alves AF, Godinho M, et al. Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. Journal of Alloys and Compounds. 2017;703:370-80.

11. Cushing BL, Kolesnichenko VL, O'Connor CJ. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews. 2004;104(9):3893-946.

12. Gherca D, Pui A, Nica V, Caltun O, Cornei N. Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites. Ceramics International. 2014;40(7):9599-607.

13. Kim J-H, Kim S-M, Kim Y-I. Properties of Magnetic Nanoparticles Prepared by Co-Precipitation. Journal of Nanoscience and Nanotechnology. 2014;14(11):8739-44.

14. Simeonidis K, Liébana-Viñas S, Wiedwald U, Ma Z, Li ZA, Spasova M, et al. A versatile large-scale and green process for synthesizing magnetic nanoparticles with tunable magnetic hyperthermia features. RSC Adv. 2016;6(58):53107-17.

15. Dickman MH. Buchbesprechung: Metal Oxide Chemistry and Synthesis. From Solution to Solid State. Von Jean-Pierre Jolivet. Angewandte Chemie. 2001;113(14):2789-90.

16. Safi R, Ghasemi A, Shoja-Razavi R, Tavousi M. The role of pH on the particle size and magnetic consequence of cobalt ferrite. Journal of Magnetism and Magnetic Materials. 2015;396:288-94.

17. Akbari S, Masoudpanah SM, Mirkazemi SM, Aliyan N. PVA assisted coprecipitation synthesis and characterization of MgFe 2 O 4 nanoparticles. Ceramics International. 2017;43(8):6263-7.

18. Khot VM, Salunkhe AB, Thorat ND, Phadatare MR, Pawar SH. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials. 2013;332:48-51.

19. Mozaffari S, Li W, Thompson C, Ivanov S, Seifert S, Lee B, et al. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale. 2017;9(36):13772-85.

20. Aliyan N, Mirkazemi SM, Masoudpanah SM, Akbari S. The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Applied Physics A. 2017;123(6).

21. Zaki HM, Dawoud HA. Far-infrared spectra for copper–zinc mixed ferrites. Physica B: Condensed Matter. 2010;405(21):4476-9.

22. Infrared and Raman Characteristic Group Frequencies:  Tables and Charts. 3rd ed By George Socrates (The University of West London, Middlesex, U.K.). J. Wiley and Sons:  Chichester. 2001. xviii + 348 pp. $185.00. ISBN:  0-471-85298-8. Journal of the American Chemical Society. 2002;124(8):1830-.

23. Maity D, Chandrasekharan P, Pradhan P, Chuang K-H, Xue J-M, Feng S-S, et al. Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. Journal of Materials Chemistry. 2011;21(38):14717.

24. Lu HF, Hong RY, Li HZ. Influence of surfactants on co-precipitation synthesis of strontium ferrite. Journal of Alloys and Compounds. 2011;509(41):10127-31.

25. Spaldin NA. Magnetic Materials: Cambridge University Press; 2009.

26. Hergt R, Dutz S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials. 2007;311(1):187-92.

27. Kumar V, Rana A, Yadav MS, Pant RP. Size-induced effect on nano-crystalline CoFe2O4. Journal of Magnetism and Magnetic Materials. 2008;320(11):1729-34.

 

Statistics
Article View: 538
PDF Download: 1,106
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

This official publication of the School of Metallurgy and Materials Engineering is licensed under Creative Commons Attribution 4.0

Journal Management System. Designed by sinaweb.