Characterization of Elastic Properties of Porous Graphene Using an Ab Initio Study

Document Type: Research Paper


Department of Mechanical Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran.


Importance of covalent bonded two-dimensional monolayer nanostructures and also hydrocarbons is undeniably responsible for creation of new fascinating materials like polyphenylene polymer, a hydrocarbon super honeycomb network, so-called porous graphene. The mechanical properties of porous graphene such as its Young’s modulus, Poisson’s ratio and the bulk modulus as the determinative properties are calculated in this paper using ab initio calculations. To accomplish this aim, the density functional theory on the basis of generalized gradient approximation and the Perdew–Burke–Ernzerhof exchange correlation is employed. Density functional theory calculations are used to calculate strain energy of porous graphene with respect to applied strain. Selected numerical results are then presented to study the properties of porous graphene. Comparisons are made between the properties of porous graphene and those of other analogous nanostructures. The results demonstrated lower stiffness of porous graphene than those of graphene and graphyne, and higher stiffness than that of graphdyine and other graphyne families. Unlikely, Poisson’s ratio is observed to be more than that of graphene and also less than that of graphyne. It is further observed that the presence of porosity and also formation of C-H bond in the pore sites is responsible for these discrepancies. Porous graphene is found to behave as the isotropic material.


1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-9.
2. Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438(7065):201-4.
3. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197-200.
4. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters. 2008;100(1):016602.
5. Topsakal M, Cahangirov S, Ciraci S. The response of mechanical and electronic properties of graphane to the elastic strain. Applied Physics Letters. 2010;96(9):091912.
6. Ni Z, Bu H, Zou M, Yi H, Bi K, Chen Y. Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B: Condensed Matter. 2010;405(5):1301-6.
7. Ansari R, Ajori S, Motevalli B. Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices and Microstructures. 2012;51(2):274-89.
8. Nag A, Raidongia K, Hembram KP, Datta R, Waghmare UV, Rao CN. Graphene analogues of BN: novel synthesis and properties. ACS Nano. 2010;4(3):1539-44.
9. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature. 2006;442(7100):282-6.
10. Rafiee MA, Rafiee J, Yu ZZ, Koratkar N. Buckling resistant graphene nanocomposites. Applied Physics Letters. 2009;95(22):223103.
11. Haley MM. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure and Applied Chemistry. 2008;80(3):519-32.
12. Kang J, Li J, Wu F, Li SS, Xia JB. Elastic, electronic, and optical properties of two-dimensional graphyne sheet. The Journal of Physical Chemistry C. 2011;115(42):20466-70.
13. Zhou J, Lv K, Wang Q, Chen XS, Sun Q, Jena P. Electronic structures and bonding of graphyne sheet and its BN analog. The Journal of Chemical Physics. 2011;134(17):174701.
14. Pan LD, Zhang LZ, Song BQ, Du SX, Gao HJ. Graphyne-and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Applied Physics Letters. 2011;98(17):173102.
15. Cranford SW, Buehler MJ. Mechanical properties of graphyne. Carbon. 2011;49(13):4111-21.
16. Yang Y, Xu X. Mechanical properties of graphyne and its family–A molecular dynamics investigation. Computational Materials Science. 2012;61:83-8.
17. Sofo JO, Chaudhari AS, Barber GD. Graphane: a two-dimensional hydrocarbon. Physical Review B. 2007;75(15):153401.
18. Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin N, Deng X, Cai C, Barth JV, Kern K. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Materials. 2004;3(4):229-33.
19. Schlickum U, Decker R, Klappenberger F, Zoppellaro G, Klyatskaya S, Ruben M, Silanes I, Arnau A, Kern K, Brune H, Barth JV. Metal-organic honeycomb nanomeshes with tunable cavity size. Nano Letters. 2007;7(12):3813-7.
20. Barth JV. Molecular architectonic on metal surfaces. Annual Reviews Physical Chemistry. 2007;58:375-407.
21. Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature. 2003;424(6952):1029-31.
22. Barth JV, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature. 2005;437(7059):671-9.
23. Treier M, Ruffieux P, Gröning P, Xiao S, Nuckolls C, Fasel R. An aromatic coupling motif for two-dimensional supramolecular architectures. Chemical Communications. 2008(38):4555-7.
24. Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, Gröning P, Kastler M, Rieger R, Feng X, Müllen K. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chemical Communications. 2009(45):6919-21.
25. Du A, Zhu Z, Smith SC. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations. Journal of the American Chemical Society. 2010;132(9):2876-7.
26. Reunchan P, Jhi SH. Metal-dispersed porous graphene for hydrogen storage. Applied Physics Letters. 2011;98(9):093103.
27. Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli CA, Passerone D. Porous graphene as an atmospheric nanofilter. Small. 2010;6(20):2266-71.
28. Li Y, Zhou Z, Shen P, Chen Z. Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chemical Communications. 2010;46(21):3672-4.
29. Premkumar T, Geckeler KE. Graphene–DNA hybrid materials: Assembly, applications, and prospects. Progress in Polymer Science. 2012;37(4):515-29.
30. Postma HW. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Letters. 2010;10(2):420-5.
31. Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J. Hierarchically porous graphene as a lithium–air battery electrode. Nano Letters. 2011;11(11):5071-8.
32. Russo P, Hu A, Compagnini G. Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Letters. 2013;5(4):260-73.
33. S. Baroni, Corso A. Dal, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, and A. Kokalj,
34. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865.
35. Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B. 1996;54(23):16533.
36. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Physical Review B. 1976;13(12):5188.
37. Bieri M, Nguyen MT, Groning O, Cai J, Treier M, Ait-Mansour K, Ruffieux P, Pignedoli CA, Passerone D, Kastler M, Mullen K. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. Journal of the American Chemical Society. 2010;132(46):16669-76.
38. Li Y, Li Z, Shen PK. Simultaneous Formation of Ultrahigh Surface Area and Three‐Dimensional Hierarchical Porous Graphene‐Like Networks for Fast and Highly Stable Supercapacitors. Advanced Materials. 2013;25(17):2474-80.
39. Hao F, Fang D, Xu Z. Mechanical and thermal transport properties of graphene with defects. Applied Physics Letters. 2011;99(4):041901.
40. Berger D, Ratsch C. Line defects in Graphene: How doping affects the electronic and mechanical properties. arXiv preprint arXiv:1601.06708. 2016.
41. Topsakal M, Ciraci S. Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study. Physical Review B. 2010;81(2):024107.
42. Berinskii IE, Borodich FM. On the isotropic elastic properties of graphene crystal lattice. InSurface Effects in Solid Mechanics. 2013;30:33-42.