1. Iijima S. Helical microtubules of graphitic carbon. nature.1991;354(6348):56-8.
2. Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Physical review letters. 1996;76(14):2511.
3. Odegard GM, Gates TS, Nicholson LM, Wise KE. Equivalentcontinuum modeling of nano-structured materials.
Composites Science and Technology. 2002;62(14):1869-80.
4. Li C, Chou TW. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures. 2003;40(10):2487-99.
5. Xiao JR, Gama BA, Gillespie JW. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. International Journal of Solids and Structures. 2005;42(11):3075-92.
6. Ávila AF, Lacerda GS. Molecular mechanics applied to single-walled carbon nanotubes. Materials Research. 2008;11(3):325-33.
7. Tserpes KI, Papanikos P. Finite element modeling of singlewalled carbon nanotubes. Composites Part B: Engineering. 2005;36(5):468-77.
8. Zaeri MM, Ziaei-Rad S, Vahedi A, Karimzadeh F. Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon. 2010;48(13):3916-30.
9. Shokrieh MM, Rafiee R. Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Materials & Design. 2010;31(2):790-5.
10. Lu X, Hu Z. Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Composites Part B: Engineering. 2012;43(4):1902-13.
11. Gogotsi Y, editor. Nanomaterials handbook. CRC press; 2006.
12. Kalamkarov AL, Georgiades AV, Rokkam SK, Veedu VP, Ghasemi-Nejhad MN. Analytical and numerical techniques to predict carbon nanotubes properties. International journal of Solids and Structures. 2006;43(22):6832-54.
13. Rafii-Tabar H. Computational modelling of thermomechanical and transport properties of carbon nanotubes. Physics Reports. 2004;390(4):235-452.
14. Gelin BR. Molecular modeling of polymer structures and properties. Hanser Publishers; Hanser/Gardner Publications; 1994.
15. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society. 1995;117(19):5179-97.
16. Gaddamanugu D. M.Sc. Thesis. Texas A & M University.2009.
17. Giannopoulos GI, Kakavas PA, Anifantis NK. Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Computational Materials Science. 2008;41(4):561-9.
18. Yang QS, Li BQ, He XQ, Mai YW. Modeling the mechanical properties of functionalized carbon nanotubes and their composites: design at the atomic level. Advances in Condensed Matter Physics. 2014;482056;doi: 10.1155/2014/482056.
19. Lu JP. Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters. 1997;79(7):1297.
20. Sun X, Zhao W. Prediction of stiffness and strength of singlewalled carbon nanotubes by molecular-mechanics based finite element approach. Materials Science and Engineering:A. 2005;390(1):366-71.
21. Natsuki T, Tantrakarn K, Endo M. Effects of carbon nanotube structures on mechanical properties. Applied Physics A. 2004;79(1):117-24.