A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

Document Type: Research Paper

Authors

School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 14395-553, Tehran, Iran

Abstract

In this research, the effect of different biopolymers such as polyethylene glycol (PEG) and polyvinyl
alcohol (PVA) on synthesis and characterization of polymer/cobalt ferrite (CF) nano-composites by
mechanical alloying method has been systematically investigated. The structural, morphological and
magnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD),
Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field
emission scanning electron microscopy (FESEM), and vibrating sample magnetometer techniques
(VSM), respectively. The polymeric cobalt ferrite nano-composites were obtained by employing a
two-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanical
alloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. The
results revealed that PEG melted due to the local temperature raise during milling. Despite this
phenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is an
appropriate candidate for producing nano-composite samples due to its high melting point. In
PVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and
0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix even
though the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR result
confirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluation
showed that saturation magnetization and coercivity values decreased in nano-composite sample
comparing the pure cobalt ferrite.

Keywords


[1]. Li, S., Lin, M. M., Toprak, M. S., Kim, D. K., Muhammed, M., Nano. rev. Vol. 1 (2010) pp. 1-19.
[2]. Philippova, O., Barabanova, A., Molchanov, V., Khokhlov, A., Eur. Polym. J. Vol. 47 (2011) pp. 542-559.
[3]. Salunkhe, A., Khot, V., Thorat, N., Phadatare, M., Sathish, C., Dhawale, D., Pawar, S., Appl. Surf. Sci., Vol. 264 (2013) pp. 598-604.
[4]. Qin, R., Li, F., Liu , L., Jiang , W., J. Alloys Compd. Vol. 482 (2009) pp. 508-511.
[5]. Covaliu, C. I., Jitaru, I., Paraschiv, G., Vasile, E., Biriş, S. Ş., Diamandescu, L., Ionita, V., Iovu, H., Powder Technol. Vol. 237 (2013) pp. 415-426.
[6]. Shafiu, S., Topkaya, R., Baykal, A., Toprak, M. S., Mater. Res. Bull. Vol. 48 (2013) pp. 4066-4071.
[7]. Zhang, Q., Zhang, H., Xie, G., Zhang, J., J. Magn. Magn. Mater. Vol. 311 (2007) pp. 140-144.
[8]. Huang, J., Pen, H., Xu, Z., Yi, C., React. Funct. Polym. Vol. 68 (2008) pp. 332-339.
[9]. Gorrasi, G., Sorrentino, A., Green Chem. Vol. 17 (2015) pp. 2610-2625.
[10]. Al-Saie, A., Bououdina, M., Jaffar, A., Arekat, S., Melnyczuk, J. M., Thai, Y. T., Brazel ,C. S., J. Alloys Compd. Vol. 509 (2011)pp. S393-S396.
[11]. Pan, J., Shaw, W., J. Appl. Polym. Sci. Vol. 56 (1995) pp. 557-566.
[12]. Ishida, T., Tamaru, S., J. Mater. Sci. Lett. Vol. 12 (1993) pp. 1851-1853.
[13]. Zhu, Y., Li, Z., Zhang, D., Tanimoto, T., J. Appl. Polym. Sci. Vol. 99 (2006) pp. 501-505.
[14]. Hedayati, M., Salehi, M., Bagheri, R., Panjepour, M., Maghzian, A., , Powder Technol. Vol. 207 (2011) pp. 296-303
[15]. Raju, P., Murthy, S., Applied Nanosci., Vol. 3 (2013) pp. 469-475.
[16]. Nathani, H., Gubbala S., Misra, R., , Mater. Sci. Eng., B, Vol. 111 (2004) pp. 95-100.
[17]. Rashidi, S., Ataie, A., Adv. Mater. Res. Vol. 829 (2014) pp.747-751.
[18]. Williamson, G., Hall, W., Acta Metall. Vol. 1(1953) pp. 22-31.
[19]. Waje, S. B., Hashim, M., Yusoff, W. D. W., Abbas, Z., Appl. Surf. Sci. Vol. 256 (2010) pp. 3122-3127.
[20]. Suryanarayana, C., Prog. Mater Sci. Vol. 46 (2001) pp. 1-184.
[21]. Abareshi, M., Zebarjad, S. M., Goharshadi, E. K., J. Vinyl. Additive. Technol. Vol. 16 (2010) pp. 90-97.
[22]. Kayal. S., Ramanujan. R., Mater. Sci. Eng., C, Vol. 30 (2010) pp. 484-490.
[23]. Cojocariu, A. M., Soroceanu, M., Hrib, L., Nica, V., Caltun, O. F., Mater. Chem. Phys. Vol. 135 (2012) pp. 728-732.
[24]. Khairy, M., J. Alloys Compd. Vol. 608 (2014) pp. 283-291.
[25]. Reddy, K. R., Lee, K.P., Gopalan, A. I., Kang, H. D., React. Funct. Polym. Vol. 67 (2007) pp. 943-954.
[26]. Singh, S., Munjal, S., Khare, N., , J. Magn. Magn. Mater. Vol. 386 (2015) pp. 69-73.
[27]. Cedeño-Mattei, Y., Perales-Pérez, O., Uwakweh, O. N., J. Magn. Magn. Mater. Vol. 341 (2013) pp. 17-24.