Facile synthesis of copper oxide nanoparticles using copper hydroxide by mechanochemical process

Document Type : Research Paper


Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran


A facile mechanochemical-based method for synthesis of copper oxide (CuO) nanoparticles is here by introduced. For this purpose, copper hydroxide powder was synthesized through a facile solution method (CuSO4 + 2 Na(OH) → Cu(OH)2 + Na2SO4) after which milling of as-prepared Cu(OH)2 precursor and NaCl resulted in the mechanochemical dehydration of Cu(OH)2 and dispersion of CuO nanoparticles into the salt matrix (Cu(OH)2+2NaCl=CuCl2+2NaOH and then CuCl2+2NaOH=CuO+2NaCl+H2O). Subsequently, washing the milled powders led to the removal of salt matrix and separation of CuO particles. The main advantages of the introduced method are synthesis of CuO nanoparticles with narrow size distribution without subsequent annealing during the process. The results of X-ray diffraction (XRD) indicated that the dehydration of Cu(OH)2 into CuO was completed after three hours of milling. Structural analysis using scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and particle size analyzer (PSA) showed that CuO particles had moderately equiaxed shape with sizes ranging from 10-27 nm. Also, the results of UV–visible absorption spectroscopy indicated that CuO nanoparticles had a band gap of 2.5 eV.


[1]. Liu Q, Liu H, Liang Y, Xu Z, Yin G. Mate. Res. Bull. Vol 41 (2006) pp. 697-702.
[2]. Al-Gaashani R, Radimana S, Tabetc N, Razak Daud A. J. Alloy. Compd. Vol. 509 (2011) pp. 8761-9.
[3]. Hassan MS, Amna T, Yang O-B, El-Newehyd MH, Al-Deyab SS, Khil M-S. Colloid. Surface. B. Vol 97 (2012) pp. 201-6.
[4]. Wongpisutpaisan N, Charoonsuk P, Vittayakorn N, Pecharapa W., Energy Procedia. Vol 9 (2011) pp. 404-9.
[5]. Son DI, You CH, Kim TW., Appl. Surf. Sci. Vol 255 (2009) pp.8794-7.
[6]. Wang H, Xu J-Z, Zhu J-J, Chen H-Y., J. Cryst. Growth. Vol 244 (2002) pp. 88-94.
[7]. Han D, Yang H, Zhu C, Wang F., Powder Technol. Vol 185 (2008) pp. 286-90.
[8]. Jia W, Reitz E, Sun H, Zhang H, Lei Y., Mater. Lett. Vol 63 (2009) pp. 519-22.
[9]. Lu C, Qi L, Yang J, Zhang D, Wu N, Ma J., J. Physic. Chem. B. Vol 108 (2004) pp. 17825-31.
[10]. Song X, Sun S, Zhang W, Yu H, Fan W., J. Physic. Chem. B. Vol 108 (2004) pp. 5200-5.
[11]. Tsuzuki T, McCormick PG., Acta Mater. Vol 48 (2000) pp. 2795-801.
[12]. Tsuzuki T, McCormick PG., J. Mater. Sci. Vol 39 (2004) pp. 5143-6.
[13]. Yang H, Hu Y, Tang A, Jin S, Qiu G., J. Alloy. Compd. Vol 363 (2004) pp. 276-9.
[14]. Ao W, Li J, Yang H, Zeng X, Ma X., Powder. Technol. Vol 168 (2006) pp. 148-51.
[15]. Li YX, Chen WF, Zhou XZ, Gu ZY, Chen CM., Mater. Lett. Vol 59 (2005) pp. 48-52.
[16]. Tsuzuki T, Pirault E, McCormick PG., Nanostruct. Mater. Vol 11 (1999) pp. 125-31.
[17]. Li YX, Zhou XZ, Wang Y, You XZ., Mater. Lett. Vol 58 (2003) pp. 245-9.
[18]. Cudennec Y, Lecerf A., Solid. State. Sci. Vol 5 (2003) pp. 1471-4.
[19]. Aminzare M, Amoozegar Z, Sadrnezhaad SK., Mater. Res. Bull. Vol 47 (2012) pp. 3586-91.
[20]. Ding J, Tsuzuki, T, McCormick PG., J. Mater. Sci. Vol 34 (1999) pp. 5293-8.
[21]. Salari M, Rezaee M, Marashi SPH, Aboutalebi SH., Powder Technol. Vol 192
(2009) pp. 54-7.
[22]. Suryanarayana C., Prog. Mater. Sci. Vol 46 (2001) pp. 1-184.
[23]. Beygi H, Sajjadi SA, Zare M., Int. J. Adv. Manuf. Technol. Vol 70 (2014) pp. 1653-9.
[24]. Rehman S, Mumtaz A, Hasanain SK., J. Nanoparticle. Reasearch. Vol 13 (2011) pp.
[25]. Zhang X, Zhang D, Ni X, Zheng H., Solid. State. Electron. Vol 52 (2008) pp. 245-8.