Oxidation resistance of the nanostructured YSZ coating on the IN-738 superalloy

Document Type: Research Paper


1 Department of Metallurgy and Materials Engineering, Faculty of Technology and Engineering, Shahrekord University, Iran

2 School of Metallurgy and Materials, College of Engineering, University of Tehran, Iran.

3 School of Metallurgy and Materials, College of Engineering, 2 University of Tehran, Iran


Conventional and nanostructured YSZ coatings were deposited on the IN-738 Ni super alloy by the atmospheric plasma spray technique. The oxidation was measured at 1100°C in an atmospheric electrical furnace. According to the experimental results the nanostructured coatings showed a better oxidation resistance than the conventional ones. The improved oxidation resistance of the nanocoating could be explained by the change in structure to a dense and more packed structure in this coating. The mechanical properties of the coatings were tested using the thermal cyclic, nanoindentation and bond strength tests, during which the nanostructured YSZ coating showed a better performance by structural stability.


[1].W. Beele, G. Marijnissen, A. Lieshout, The evolution of thermal barrier coatings: status and upcoming solutions for today’s key issues, Surf. Coat. Technol. 120-121 (1999) 61-67.
[2].A. Uzun, I. Cevik, M. Akcil, Effects of thermal barrier coating on a turbocharged diesel engine performance, Surf. Coat. Technol. 116-119 (1999) 505-507.
[3].G.W. Goward, Progress in coating for gas turbine airfoils, Surf. Coat. Technol. 108-109 (1998) 73-79.
[4].H. Liu, Q. Xue, The tribological properties of TZP-graphite self lubricating ceramics, Wear 198 (1996) 143-149.
[5].H. Ahn, J. Kim, D. Lim, Tribologicalbehaviour of plasma zirconia coatings, Wear 203-204 (1997) 77-87.
[6].P. Bengtsson, T. Johannesson, Characterization of microstructural defects in plasma-sprayed thermal barrier coatings, J. Therm. Spray Technol. 4(3) (1995) 245-251.
[7].B.D. Choules, K. Kokini, T.A. Taylor, Thermal fracture of thermal barrier coatings in a high heat flux environment, Surf. Coat. Technol. 106 (1998) 23-29.
[8].G. Fargas, D. Casellas, L. Llanes, M. Anglada, Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks, J. Euro. Ceram. Soc. 23 (2003) 107-114.
[9].G. Sreedhar, V.S. Raja, Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4-10 wt.%NaCl melt, Corros. Sci. 52 (2010) 2592-2602.
[10]. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, second ed., Wiley Interscience, New York, (1976).
[11]. T.A. Taylor, Thermal barrier coating for substrates and process for producing it, US Patent 5,073,433 (1991).
[12]. G. Marijnissen, A. Lieshout, G. Ticheler, H. Bons, M. Ridder, Thermal barrier coating system ceramic structure, US Patent 5,876,860 (1999).
[13]. H. Chen, C.X. Ding, Nanostructured zirconia coating prepared by atmospheric plasma spraying, Surf. Coat. Technol. 150 (2002) 31-36.
[14]. H. Chen, C. Ding, P. Zhang, P. La, S.W. Lee, Wear of plasma-sprayed nanostructured zirconia coatings against stainless steel under distilled-water conditions, Surf. Coat. Technol. 173 (2003) 144-149.
[15]. C.C. Berndt, E.J. Larernia, Thermal spray processing of nanoscale materials, J. Therm. Spray Technol. 7(3) (1998) 411- 440.
[16]. B.H. Kear, G. Skandan, Thermal spray processing of nanoscale materials, Nanostructured Mater. 8 (6) (1997) 765-769.

[17]. P.G. Klemens, M. Gell, Thermal conductivity of thermal barrier coatings, Mater. Sci. Eng. A 245 (1998) 143-149.
[18]. J. Karthikeyan, C.C. Berndt, J. Tikkanen, S. Reddy, H. Herman, Plasma spray synthesis of nanomaterial powders and deposits, Mater. Sci. Eng. A 238 (1997) 275-286.
[19]. M. Gell, Application opportunities for nanostructured materials and coatings, Mater. Sci. Eng. A 204 (1-2) (1995) 246-251.
[20]. C. Amaya, W. Aperador, J.C. Caicedo, F.J. Espinoza-Beltran, J. Munoz-Saldana, G. Zambrano, P. Prieto, Corrosion study of alumina/yttria-stabilized zirconia (Al2O3/YSZ) nanostructured thermal barrier coatings (TBC) exposed to high temperature treatment, Corros. Sci. 51 (2009) 2994-2999.
[21]. L. Chun-bo, Z. Zhi-min, J. Xian-liang, L. Min, Z. Zhao-hui, Comparison of thermal shock behaviors between plasma-sprayed nanostructured and conventional zirconia thermal barrier coatings, Trans. Nanoferrous Met. Soc. China 19 (2009) 99-107.
[22]. G. Skandan, Processing of nanostructured zirconia ceramics, Nanostructured Mater. 5 (2) (1995) 111-126.
[23]. Y. Zhu, M. Huang, J. Huang, C. Ding, Vacuum-plasma sprayed nanostructured titanium oxide films, J. Therm. Spray Technol. 8(2) (1999) 219-222.
[24]. B.H. Kear, Z. Kalman, R.K. Sadangi, G. Skandan, J. Colaizzi, W.E. Mayo, Plasma-sprayed nanostructured Al2O3/TiO2 powders and coatings, J. Therm. Spray Technol. 9(4) (2000) 483-487.
[25]. L.L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, T.D. Xiao, P.R. Strutt, The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions, Surf. Coat. Technol. 130 (2000) 1-8.
[26]. H. Chen, Y. Zeng, C. Ding, Microstructural characterization of plasma-sprayed nanostructured zirconia powders and coatings, J. Eur. Ceram. Soc. 23 (2003) 491-497.
[27]. B. Liang, C. Ding, Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying, Surf. Coat. Technol. 197 (2005) 185-192.
[28]. ASTM C633-79, Standard test method for adhesion or cohesion strength of thermal spray
coating, 19th Annual Book of ASTM Standards, ASTM, Philadelphia, (1979).
[29]. A.M. Limarga, S. Widjaja, T.H. Yip, Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings, Surf. Coat. Technol. 197 (2005) 93-102.
[30]. K.W. Schlichting, N.P. Padture, E.H. Jordan, M. Gell, Failure modes in plasma-sprayed thermal barrier coatings, Mater. Sci. Eng. A 342 (2003) 120-130.
[31]. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Mechanisms controlling the durability of thermal barrier coatings, Prog. Mater. Sci. 46 (2001) 505-553.
[32]. A.N. Khan, J. Lu, Behavior of air plasma sprayed thermal barrier coatings subject to intense thermal cycling, Surf. Coat. Technol. 166 (2003) 37-43.
[33]. P.S. Manning, J.D. Sirman, R.A.D. Souza, J.A. Kilner, The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilized zirconia, Solid State Ionics 100 (1997) 1-10.
[34]. A.C. Fox, T.W. Clyne, Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings, Surf. Coat. Technol. 184 (2004) 311-321.
[35]. H.J. Jang, D.H. Park, Y.G. Jung, S.C. Choi, U. Paik, Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs), Surf. Coat. Technol. 200 (2006) 4355-4362.
[36]. J.S. Wallace, J. Ilavsky, Elastic modulus measurements in plasma sprayed deposits, J. Therm. Spray Technol. 7 (1998) 521-526.
[37]. Y.S. Song, I.G. Lee, D.J. Kim, K. Lee, High temperature properties of plasma sprayed coatings of YSZ/NiCrAlY on inconel substrate, Mater. Sci. Eng. A 332 (2002) 129-133.
[38]. F. Tang, J.M. Schoenung, Cycled evolution of Young’s modulus of air plasma sprayed yttria stabilized zirconia in thermally thermal barrier coatings, Scripta Mater. 54 (2006) 1587-1592.
[39]. C.R.C. Lima, J.M. Guilemany, Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats, Surf. Coat. Technol. 201 (2007) 4694-4701.