Effect of hydrogen peroxide on crystalline orientation and optoelectrical properties of aluminum-doped zinc oxide prepared by chemical bath deposition

Document Type : Research Paper

Authors

1 Department of Nano Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran

2 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran

3 Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588, Iran

4 Nanoparticles and Coatings Lab, Department of Physics, Sharif University of Technology, Tehran, 14588, Iran

10.22059/jufgnsm.2025.02.10

Abstract

The current work demonstrates the growth of aluminum-doped ZnO (AZO) hexagonal rods vertically aligned on soda-lime glass (SLG) via the chemical bath deposition (CBD) method. The controlling crystalline orientation was performed using hydrogen peroxide (H2O2) accompanied by C6H17N3O7 as growth controlling agents (CAs). The results showed that the presence of H2O2 significantly promoted (002) plane orientation and significantly improved structural, morphological, and optical properties of AZO. The as-fabricated AZO with H2O2 exhibited a layer thickness of 1.8 μm, optical transparency of 90.4 %, sheet resistivity of 10 Ω □-1, and the resistivity of 1.8 ×10^(-3) Ω.cm. This approach provides an efficient route to alter the AZO morphology and properties for advanced optoelectronic applications.

Keywords


  1. E. Baghestani, F. Tajabadi, Z. Saki, M. Heidariramsheh, F. Ghasemi, S. Darbari, S. Mashhoun, N. Taghavinia, A conductive adhesive ink for carbon-laminated perovskite solar cells with enhanced stability and high efficiency, Solar Energy, 266 (2023) 112165.
  2. M. Forouzandeh, M. Heidariramsheh, H.R. Heydarnezhad, H. Nikbakht, M. Stefanelli, L. Vesce, N. Taghavinia, Enhanced carbon-based back contact electrodes for perovskite solar cells: Effect of carbon paste composition on performance and stability, Carbon, 229 (2024) 119450.
  3. A. Acharya, B. Sarwan, R. Panda, S. Shrivastava, V. Ganesan, Tuning of TCO properties of ZnO by silver addition, Superlattices and Microstructures, 67 (2014) 97-109.
  4. E. Filatova, A. Baraban, A. Konashuk, M. Konyushenko, A. Selivanov, A. Sokolov, F. Schaefers, V. Drozd, Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/TiO2/TCO/metal assemblies, New Journal of Physics, 16 (2014) 113014.
  5. H. Sai, T. Koida, T. Matsui, Improved electrical contact properties in Indium-free silicon heterojunction solar cells with amorphous SnO2 TCO layers, Solar Energy Materials and Solar Cells, 278 (2024) 113191.
  6. L. Kathwate, In-doped ZnO films deposited by modified SILAR method for enhanced ethanol gas sensor application, Ceramics International, 50 (2024) 48462-48473.
  7. H.W. Lee, S. Biswas, H. Choi, Y. Lee, H. Kim, Improving photostability of non-fullerene acceptor-based inverted organic solar cells using Ga-doped ZnO electron transport layer, Applied Surface Science, 659 (2024) 159930.
  8. S. Chowdhury, K.S. Lau, A.S. Najm, H.S. Naeem, A.M. Holi, N. Amin, A. Laref, M.S. Jamal, C.H. Chia, Structural, morphological, and optical properties of Al-doped ZnO Material synthesized via sol-gel and spin coating: Insights into crystallinity and doping effects, Materials Research Bulletin, 190 (2025) 113516.
  9. Z. Li, A. Xie, Q. Nong, Y. Sun, H. Cai, Z. Chen, J. He, P. Gao, Boron‐Doped Zinc Oxide Electron‐Selective Contacts for Crystalline Silicon Solar Cells with Efficiency over 22.0%, Small Science, 4 (2024) 2400168.
  10. E. Bacaksiz, S. Aksu, S. Yılmaz, M. Parlak, M. Altunbaş, Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis, Thin Solid Films, 518 (2010) 4076-4080.
  11. M.F. Gözükızıl, PH effect on structural, morphological and optical properties of ZnO thin films produced by chemical bath deposition method, Eur Chem Bull, 9 (2020) 335-338.
  12. H.Q. AL-Arique, S.S. AL-Qadasy, N.M. Kaawash, S. Chishty, K.A. Bogle, Study the characterization of ZnO and AZO films prepared by spray pyrolysis and the effect of annealing temperature, Optical Materials, 150 (2024) 115261.
  13. G.-B. Lee, S.H. Song, M.-W. Lee, Y.-J. Kim, B.-H. Choi, Characterization of physical and mechanical properties of Al2O3-doped ZnO (AZO) thin films deposited on transparent polyimide supports with various ALD process parameters, Applied Surface Science, 535 (2021) 147731.
  14. Y. Wang, G. Xu, J. Yang, W. Mao, J. Wang, Z. Liu, Y. Dong, S. Yang, J. Li, Fabrication of AZO and FAZO films using low-cost spin-coating method, Optical Materials, 126 (2022) 112204.
  15. M. Heidariramsheh, H. Jalalichamani, M. Shabanzadeh, S.M. Mahdavi, N. Taghavinia, Comparison of meniscus-printed Cu2Sn (S, Se) 3 and Cu2ZnxSn (S, Se) 4 thin films to apply in superstrate solar cells, Materials Research Bulletin, 184 (2025) 113243.
  16. M.K. Sahnesarayi, S. Rastegari, H. Sarpoolaky, Enhanced photoelectrochemical water splitting performance of vertically aligned Bi2O3 nanosheet arrays derived from chemical bath deposition method by controlling chemical bath temperature and complexing agent concentration, Surfaces and interfaces, 30 (2022) 101819.
  17. M.C. Portillo, O.P. Moreno, R.G. Pérez, M.A. García, M.H. Hernández, S.S. Sauceda, F.M. Bustamante, R.R. Gutiérrez, Structural and optical properties of ZnO nanocrystals growth by the chemical bath deposition, Optik, 157 (2018) 125-133.
  18. Z. Shi, A.V. Walker, Chemical bath deposition of ZnO on functionalized self-assembled monolayers: selective deposition and control of deposit morphology, Langmuir, 31 (2015) 1421-1428.
  19. B. Cao, W. Cai, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions, The Journal of Physical Chemistry C, 112 (2008) 680-685.
  20. R.S. Kumar, P. Sudhagar, R. Sathyamoorthy, P. Matheswaran, Y.S. Kang, Direct assembly of ZnO nanostructures on glass substrates by chemical bath deposition through precipitation method, Superlattices and Microstructures, 46 (2009) 917-924.
  21. M. Szymańska-Chargot, J. Cieśla, M. Chylińska, K. Gdula, P.M. Pieczywek, A. Kozioł, K.J. Cieślak, A. Zdunek, Effect of ultrasonication on physicochemical properties of apple based nanocellulose-calcium carbonate composites, Cellulose, 25 (2018) 4603-4621.
  22. S. Bose, C. Chevallier, S.O.S. Hamady, D. Horwat, J.-F. Pierson, P. Boulet, T. Gries, T. Aubert, N. Fressengeas, Elaboration of high-transparency ZnO thin films by ultrasonic spray pyrolysis with fast growth rate, Superlattices and Microstructures, 156 (2021) 106945.
  23. C. Wang, H. Zhang, F. Yang, Y. Fan, Q. Liu, Enhanced light scattering effect of wrinkled transparent conductive ITO thin film, RSC Advances, 7 (2017) 25483-25487.
  24. Y.-T. Cheng, T.-L. Lu, M.-H. Hong, J.-J. Ho, C.-C. Chou, J. Ho, T.-P. Hsieh, Evaluation of transparent ITO/nano-Ag/ITO electrode grown on flexible electrochromic devices by roll-to-roll sputtering technology, Coatings, 12 (2022) 455.
  25. R. Zamiri, B. Singh, M.S. Belsley, J. Ferreira, Structural and dielectric properties of Al-doped ZnO nanostructures, Ceramics International, 40 (2014) 6031-6036.
  26. S. Lee, Q. Wang, V. Chakrapani, Interplay of surface transfer doping and Burstein Moss shift in V 2 O 5/V 2 O 5− x: Implications for band gap, doping, and catalysis, Physical Review Materials, 9 (2025) 085801.
  27. K. Gurav, U. Patil, S. Pawar, J. Kim, C. Lokhande, Controlled crystallite orientation in ZnO nanorods prepared by chemical bath deposition: Effect of H2O2, Journal of Alloys and Compounds, 509 (2011) 7723-7728.
  28. Kim, K. H., Koo, B. R., & Ahn, H. J. Sheet resistance dependence of fluorine-doped tin oxide films for high-performance electrochromic devices. Ceramics International, 44(8) (2018) 9408-9413.
  29. J.H. Park, D.J. Byun, J.K. Lee, Electrical and optical properties of fluorine-doped tin oxide (SnOx: F) thin films deposited on PET by using ECR–MOCVD, Journal of electroceramics, 23 (2009) 506-511.
  30. A. Way, J. Luke, A.D. Evans, Z. Li, J.-S. Kim, J.R. Durrant, H.K. Hin Lee, W.C. Tsoi, Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices, AIP Advances, 9 (2019).
  31. Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering, Coatings, 4 (2014) 732-746.
  32. F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, L. Zhuge, Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films, Vacuum, 89 (2013) 127-131.
  33. W.-J. Jeong, G.-C. Park, Electrical and optical properties of ZnO thin film as a function of deposition parameters, Solar Energy Materials and Solar Cells, 65 (2001) 37-45.
  34. L. Li, S. Gao, P. Yang, Inducing efficient photoelectric properties at AZO/Ag/AZO nanomultilayer films, Crystal Growth & Design, 24 (2024) 2075-2081.
  35. I. Iwantono, P. Nurrahmawati, S. Natalia, R.F. Syahputra, A. Awitdrus, Z. Zulkarnain, A.A. Umar, Aluminium Doping for Enhancing Charge Photoanode ZnO Nanorod for DSSC, International Journal of Nanoelectronics & Materials, 13 (2020).
  36. P. Fuchs, H. Hagendorfer, Y.E. Romanyuk, A.N. Tiwari, Doping strategies for highly conductive Al‐doped ZnO films grown from aqueous solution, physica status solidi (a), 212 (2015) 51-55.
  37. N.A. Arzaee, F.I. Za’abar, M.S. Bahrudin, A.Z. Arsad, N.I. Azman, M.N. Abd Rahman, W.S. Wan Abdullah, C.F. Chau, A.W. Mahmood Zuhdi, Systematic optimization of sol–gel processed Al-doped ZnO for cost-effective transparent conductive oxide, Journal of Sol-Gel Science and Technology, 110 (2024) 52-61.
  38. A. Henni, A. Merrouche, L. Telli, A. Karar, Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition, Journal of Electroanalytical Chemistry, 763 (2016) 149-154.