Preparation and Characterization of Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)–Aluminum Nitride (AlN) Nanocomposite for the Fabrication of Piezoelectric Nanogenerators

Document Type : Research Paper

Authors

Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, India

10.22059/jufgnsm.2025.02.06

Abstract

Flexible piezoelectric nanogenerators (PENGs) are gaining attention as sustainable power sources for wearable and self-powered electronic systems due to their capability to convert mechanical energy into electrical output. The present work aims to enhance the performance of a flexible PENG by incorporating aluminum nitride (AlN) nanoparticles into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix. The nanocomposite fibers were fabricated through electrospinning technique with an. The structural, morphological, and compositional features were examined using Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-ray Spectrometry (EDX), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). FT-IR and XRD analyses confirmed the presence and enhancement of the electroactive β-phase in the composite, while FE-SEM images indicated uniform fiber formation with well-distributed nanoparticles. The optimized device with AlN loading of 15 wt% achieved an output voltage of 2.64 V and a current of 0.49 μA, showing over a tenfold enhancement in voltage and an order of magnitude increase in current compared with pristine PVDF-HFP fibers. The nanogenerator also delivered a power density of 12.00 mW/m² under a 20 MΩ load. These results confirm that AlN nanoparticle incorporation effectively improves dipole alignment and stress transfer, positioning the PVDF-HFP/AlN composite as a strong candidate for high-performance piezoelectric energy harvesting applications.

Keywords


  1. Briscoe J, Dunn S. Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters. Nano Energy. 2014;14:15–29.
  2. Gaur A, Kumar C, Tiwari S, Maiti P. Efficient energy harvesting using processed poly(vinylidene fluoride) nanogenerator. ACS Appl Energy Mater. 2018;1(7):3019–3024.
  3. Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct. 2007;16(3).
  4. Gaur A, Kumar C, Shukla R, Maiti P. Induced piezoelectricity in poly(vinylidene fluoride) hybrid as efficient energy harvester. ChemistrySelect. 2017;2(27):8278–8287.
  5. Jana S, Garain S, Ghosh SK, Sen S, Mandal D. γ-Crystalline non-electrically poled photoluminescent ZnO–PVDF nanocomposite film for wearable nanogenerators. Nanotechnology. 2016;27(44):1–12.
  6. Chen X, Xu S, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010;10(6):2133–2137.
  7. Hussein AD, Sabry RS, Abdul Azeez Dakhil O, Bagherzadeh R. Effect of adding BaTiO3 to PVDF as nanogenerator. J Phys Conf Ser. 2019;1294(2).
  8. Guido F, Qualtieri A, Algieri L, Lemma ED, De Vittorio M, Todaro MT. AlN-based flexible piezoelectric skin for energy harvesting from human motion. Microelectron Eng. 2016;159:174–178.
  9. Gowdaman R, Deepa A, Singla YK. Recent advances in PVDF/carbon-based nanocomposite fibers for piezoelectric energy harvesting applications. J Electron Mater. 2024;54(1):24–50.
  10. Shanmugaraj P, Swaminathan A, Ravi RK, Dasaiah M, Senthil Kumar P, Sakunthala A. Porous PVDF-HFP/graphene oxide composite membranes prepared by solution casting technique. J Mater Sci Mater Electron. 2019;30(22):20079–20087.
  11. Zhang C, Fan W, Wang S, Wang Q, Zhang Y, Dong K. Recent progress of wearable piezoelectric nanogenerators. ACS Appl Electron Mater. 2021;3(6):2449–2467.
  12. Athira BS, George A, Vaishna Priya K, Hareesh US, Gowd EB, Surendran KP, Chandran A. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF–BaTiO3 nanofibers for self-powered vibration sensing applications. ACS Appl Mater Interfaces. 2022.
  13. Wang Y, Zhang X, Guo X, Li D, Cui B, Wu K, Yun J, Mao J, Xi L, Zuo Y. Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J Mater Sci. 2018;53(18):13081–13089.
  14. Yang J, Xu F, Jiang H, Wang C, Li X, Zhang X, Zhu G. Piezoelectric enhancement of electrospun AlN-doped P(VDF-TrFE) nanofiber membrane. Mater Chem Front. 2021;5(15):5679–5688.
  15. Kulkarni ND, Kumari P. Highly flexible PVDF–TiO2 nanocomposites for piezoelectric nanogenerator applications. Mater Res Bull. 2023;157:112039.
  16. Kashyap DK, Srivastava AK, Gupta MK. Lightweight, self-poled, flexible piezoelectric tungsten disulfide quantum dots-reinforced PVDF-HFP nanogenerator. ACS Appl Electron Mater. 2023.
  17. Wang Y, Fang M, Tian B, Xiang P, Zhong N, Lin H, Luo C, Peng H, Duan CG. Transparent PVDF-TrFE/graphene oxide ultrathin films with enhanced energy harvesting performance. ChemistrySelect. 2017;2(26):7951–7955.
  18. Zhao Y, Liao Q, Zhang G, Zhang Z, Liang Q, Liao X, Zhang Y. High-output piezoelectric nanocomposite generators composed of oriented BaTiO3 nanoparticles in PVDF. Nano Energy. 2015;11:719–727.
  19. Phatharapeetranun N, Ksapabutr B, Marani D, Bowen JR, Esposito V. 3D-printed barium titanate/poly(vinylidene fluoride) nano-hybrids with anisotropic dielectric properties. J Mater Chem C. 2017;5(47):12430–12440.
  20. Mahadeva SK, Walus K, Stoeber B. Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces. 2014;6(10):7547–7553.
  21. Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced materials for energy harvesting and soft robotics: emerging frontiers to enhance piezoelectric performance and functionality. Adv Mater. 2024.
  22. Paralı L, Tatardar F, Koç M, Sarı A, Moradi R. Piezoelectric response of electrospun PVDF/PZT incorporated with pristine graphene nanoplatelets for mechanical energy harvesting. J Mater Sci Mater Electron. 2024;35(1):1–15.
  23. Kim HJ. Piezoelectric nanogenerator based on lead-free flexible power electronics. 2021.
  24. Zhang M, Yang J, Si C, Han G, Zhao Y, Ning J. Piezoelectric properties of AlN thin films for MEMS applications. Micromachines. 2015;6(9):1236–1248.
  25. Zientara D, Bućko MM, Lis J. Dielectric properties of aluminium nitride–γ-alon materials. J Eur Ceram Soc. 2007;27(13–15):4051–4054.
  26. Joelin C, Praba L, Kuppusamy S, Tamilarasi R, Magesh R, Woong Jung J, Deivasigamani P, Vidhya B, Sakunthala A, Rajesh S. Piezoelectric energy harvesting in PVDF-HFP/BaTiO3 nanofibers and ultrasonic-assisted piezocatalytic degradation of ciprofloxacin. ChemistrySelect. 2024;9(40).
  27. Mariello M, Fachechi L, Guido F, De Vittorio M. Multifunctional sub-100 μm flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and parylene-C/PDMS/Ecoflex. Nano Energy. 2021;83:105811.