Nanostructured spinel ferrites NiFe2O4 and CoFe2O4: influence of cation substitution on crystal structure, surface stability, and magnetic behavior

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, Sharif University of Technology (SUT), Tehran, Iran

10.22059/jufgnsm.2025.02.01

Abstract

Nanostructured spinel ferrites NiFe2O4 and CoFe2O4 were synthesized via a chemical co-precipitation route under identical conditions to enable a direct comparison of their cation-dependent structure, colloidal stability, and magnetic behavior. X-ray diffraction (XRD) confirmed the formation of single-phase cubic spinels with nanoscale crystallites. The broad peaks reflected nanoscale crystallites; however, field-emission scanning electron microscopy (FESEM) revealed agglomerated nanoparticles with an average particle size of ~100 nm. Dynamic light scattering (DLS) revealed hydrodynamic diameters of 185 nm for CoFe2O4 and 171 nm for NiFe2O4, while the zeta potentials of -29 mV and -37 mV indicated moderate and higher colloidal stability, respectively. Magnetic measurements demonstrated a clear contrast between the two ferrites: CoFe2O4 exhibited higher saturation magnetization (75 emu g-1) and coercivity (860 Oe) than the softer NiFe2O4 (36 emu g-1, 139 Oe). The corresponding squareness ratios of 0.45 and 0.22 supported the transition from hard to soft magnetic behavior with cation substitution. These findings reveal that replacing Ni2+ with Co2+ increases magnetocrystalline anisotropy and magnetic hardness while slightly lowering colloidal stability, establishing a direct link between cation type, structural order, and magnetic performance in spinel ferrite nanostructures.

Keywords


  1. Salih SJ, Mahmood WM. Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon. 2023;9(6).
  2. Ahmad SI. A review on synthesis and magnetic hyperthermia application of spinel nano ferrite. Journal of Umm Al-Qura University for Applied Sciences. 2025;1-45.
  3. Hao A, Ning X. Recent advances in spinel ferrite-based thin films: synthesis, performances, applications, and beyond. Frontiers in Materials. 2021;8:718869.
  4. Harada M, Kuwa M, Sato R, Teranishi T, Takahashi M, Maenosono S. Cation distribution in monodispersed MFe2O4 (M= Mn, Fe, Co, Ni, and Zn) nanoparticles investigated by X-ray absorption fine structure spectroscopy: implications for magnetic data storage, catalysts, sensors, and ferrofluids. ACS Applied Nano Materials. 2020;3(8):8389-402.
  5. Wang W, Ding Z, Zhao X, Wu S, Li F, Yue M, Liu JP. Microstructure and magnetic properties of MFe2O4 (M= Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. Journal of Applied Physics. 2015;117(17).
  6. Sharma K, Calmels L, Li D, Barbier A, Arras R. Influence of the cation distribution, atomic substitution, and atomic vacancies on the physical properties of CoFe2O4 and NiFe2O4 spinel ferrites. Physical Review Materials. 2022;6(12):124402.
  7. Kurian M, Thankachan S, Nair DS, EK A, Babu A, Thomas A, Krishna KT B. Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. Journal of Advanced Ceramics. 2015;4(3):199-205.
  8. Chandekar KV, Yadav SP, Chinke S, Shkir M. Impact of Co-doped NiFe2O4 (CoxNi1− xFe2O4) nanostructures prepared by co-precipitation route on the structural, morphological, surface, and magnetic properties. Journal of Alloys and Compounds. 2023;966:171556.
  9. Darandale S, Hase D, Mane K, Khedkar J, Murade R, Dichayal S, Murade V. Synthesis of Spinel Ferrites and Their Composites: A Comprehensive Review on Synthesis Methods, Characterization Techniques, and Photocatalytic Applications. Journal of Chemical Reviews. 2025;7:216.
  10. Nejati K, Zabihi R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chemistry Central Journal. 2012;6(1):23.
  11. Mahhouti Z, El Moussaoui H, Mahfoud T, Hamedoun M, El Marssi M, Lahmar A, El Kenz A, Benyoussef A. Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles. Journal of Materials Science: Materials in Electronics. 2019;30(16):14913-22.
  12. Kumar RJ, Khan TF, Uppara N, Orugu N, Rekha E. Structural and optical study of CoFe2O4, NiFe2O4 nanoparticles synthesized via hydrothermal synthesis. GIS Science Journal. 2021;8(4):83-94.
  13. Sattar AA, El-Sayed HM, ALsuqia I. Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. Journal of Magnetism and Magnetic Materials. 2015;395:89-96.
  14. Rekha K, Vizhi RE. Exploring the structural, magnetic and magnetothermal properties of (CoFe2O4)x/(Ni0.8Zn0.2Fe2O4)1-x nanocomposite ferrites. Results in Physics. 2023;44:106139.
  15. Andersen HL, Saura-Múzquiz M, Granados-Miralles C, Klemmt R, Bøjesen ED, Christensen M. Crystal/magnetic structure and cation inversion in hydrothermally synthesized MnFe2O4, CoFe2O4, NiFe2O4, and ZnFe2O4 nanoparticles: a neutron powder diffraction study. CrystEngComm. 2025;27(6):850-64.
  16. Mills PD. Magnetic and structural properties of CoFe2O4 and NiFe2O4 thin films and heterostructures. PhD Thesis. University of York; 2022.
  17. Sen SK, Babu MM, Paul TC, Hossain MS, Hossain M, Dutta S, Hasan MR, Hossain MN, Matin MA, Hakim MA, Bala P. Gamma irradiated nanostructured NiFe2O4: effect of γ-photon on morphological, structural, optical, and magnetic properties. AIP Advances. 2021;11(7).
  18. Khanahmadi S, Masoudpanah SM. Preparation and microwave absorption properties of CoFe2O4/NiCo2O4 composite powders. Ceramics International. 2024;50(6):9779-88.
  19. Khanahmadi S, Masoudpanah SM. In-situ synthesis of NiCo/(Ni, Co)O/(Ni, Co)Fe2O4 composite as high-performance microwave absorber. Journal of Materials Research and Technology. 2023;22:585-95.
  20. Roy P, Hoque SM, Akter S, Liba SI, Choudhury S. Study on the chemical co-precipitation synthesized CoFe2O4 nanoparticle for magnetocaloric performance in the vicinity of superparamagnetic blocking temperature. Heliyon. 2024;10(14).
  21. Jia H, Horton M, Wang Y, Zhang S, Persson KA, Meng S, Liu M. Persona of transition metal ions in solids: A statistical learning on local structures of transition metal oxides. Advanced Science. 2022;9(27):2202756.
  22. Mesbahinia A, Almasi-Kashi M, Ghasemi A, Ramezani A. First order reversal curve analysis of cobalt-nickel ferrite. Journal of Magnetism and Magnetic Materials. 2019;473:161-8.
  23. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C. Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. Journal of Alloys and Compounds. 2013;563:6-11.
  24. Rotjanasuworapong K, Lerdwijitjarud W, Sirivat A. Synthesis and characterization of Fe0.8Mn0.2Fe2O4 ferrite nanoparticle with high saturation magnetization via the surfactant assisted co-precipitation. Nanomaterials. 2021;11(4):876.
  25. de la Calle I, Soto-Gómez D, Pérez-Rodríguez P, López-Periago JE. Particle size characterization of sepia ink eumelanin biopolymers by SEM, DLS, and AF4-MALLS: a comparative study. Food Analytical Methods. 2019;12(5):1140-51.
  26. Bhattacharjee S. DLS and zeta potential–what they are and what they are not?. Journal of controlled release. 2016;235:337-51.
  27. Mohd TA, Jaafar MZ, Rasol AA, Hamid MF. Measurement of streaming potential in downhole application: An insight for enhanced oil recovery monitoring. MATEC Web of Conferences. 9th International UNIMAS STEM Engineering Conference (ENCON 2016); 2016 Oct 26–28; Sarawak, Malaysia.
  28. Kooti M, Sedeh AN. Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. Journal of Materials Science & Technology. 2013;29(1):34-8.
  29. Majid F, Rauf J, Ata S, Bibi I, Malik A, Ibrahim SM, Ali A, Iqbal M. Synthesis and characterization of NiFe2O4 ferrite: Sol–gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics. Materials Chemistry and Physics. 2021;258:123888.
  30. Goldman A. Modern ferrite technology. 2nd ed. New York: Springer; 2006.
  31. Hassanzadeh Tabrizi SA. Synthesis, characterization, and magnetic properties of NiFe2O4 nanoparticles. Journal of Particle Science and Technology. 2022;8(2):79-85.
  32. Caldeira LE, Erhardt CS, Mariosi FR, Venturini J, Zampiva RY, Montedo OR, Arcaro S, Bergmann CP, Braganca SR. Correlation of synthesis parameters to the structural and magnetic properties of spinel cobalt ferrites (CoFe2O4)–an experimental and statistical study. Journal of Magnetism and Magnetic Materials. 2022;550:169128.
  33. Asif M, Irshad W, Asif MI, Almufarij RS, Alanazi YM, Hassan RU, Ahmad M, Ashraf GA, Jumanazarov D, Atamurotov F. Synthesis, DFT calculations, magnetic, and high-frequency dielectric properties of nickel ferrite (NiFe2O4). Journal of Materials Science: Materials in Electronics. 2025;36(29):1-9.
  34. Noreen S, Hussain A. Structural, optical, morphological and magnetic properties of Cu0.25M0.75Fe2O4 (M= Mn, Mg, Ni and co) ferrites for optoelectronic applications. Optical Materials. 2023;139:113797.
  35. Al-Senani GM, Al-Fawzan FF, Almufarij RS, Abd-Elkader OH, Deraz NM. Biosynthesis, physicochemical and magnetic properties of inverse spinel nickel ferrite system. Crystals. 2022;12(11):1542.
  36. AL-Sawafi MO, Nanakali NM, Abbasi A, Sadaka MW, Abed SH, Kadhim SA, Fini MS, Heydaryan K. Thermally Engineered NiFe2O4 Nanoparticles via Controlled Decomposition: A High-Performance Candidate for Magnetic Hyperthermia Applications-Based Cancer Therapy. Journal of Superconductivity and Novel Magnetism. 2025;38(5):210.
  37. Vahedrouz F, Alizadeh M, Bahrami A, Heidari Laybidi F. Magnetic Behavior of Co2+-Doped NiFe2O4 Nanoparticles with Single-Phase Spinel Structure. Crystals. 2025;15(7):624.
  38. Haneef M, Gul IH, Hussain M, Hassan I. Investigation of magnetic and dielectric properties of cobalt cubic spinel ferrite nanoparticles synthesized by CTAB-assisted co-precipitation method. Journal of Superconductivity and Novel Magnetism. 2021;34(5):1467-76.
  39. Ahmad MN, Khan H, Islam L, Alnasir MH, Ahmad SN, Qureshi MT, Khan MY. Investigating nickel ferrite (NiFe2O4) nanoparticles for magnetic hyperthermia applications. J. Mater. Phys. Sci. 2023;4(1):32-45.
  40. Nazari N, Golzan MM, Mabhouti K. Evaluating eddy current behavior and magnetic loss in pure and Mn/Zn-doped NiFe2O4 spinel ferrites. Scientific Reports. 2025;15(1):25169.
  41. Kore EK, Kore AE, Shaikh SA, Nargundkar GP, Bandgar SS, Pawar SG, Chavan SD, Chanmal CV. Structural, magnetic, and antibacterial properties of Mn-Substituted CoFe2O4 nanoparticles synthesized via coprecipitation. Applied Physics A. 2025;131(8):613.
  42. Amin KM, Eldeeb NA, Gargar Z, Mohamed IM, Elsenety M, Emara MM, Abd Elkodous M, Abouelela MM, Ibrahim PA, Ayed AA, Abdelhamid HN. Ferrite-based nanomaterials for photocatalytic CO2 reduction: Synthesis, properties, and mechanistic insights. Journal of CO2 Utilization. 2025;100:103175.