Investigating the effects of influential parameters on the process window during planetary rolling of the pure copper tube using simple rollers

Document Type : Research Paper

Authors

1 School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran

3 R&D Department, Shahid Bahonar Copper Industries Co., Kerman, Iran

10.22059/jufgnsm.2025.01.06

Abstract

Influential parameters of the planetary rolling process for the production of copper pipes were initially defined as the reduction of area, feed (α) and inclination (β) angles, material entry rate or input rate, roller’s shape and the rotational speed of the rollers. For evaluating the effects of these parameters, finite element method was selected as the best choice of continuum simulation procedures to reduce costs and save time. Extensive simulations revealed that for any specific reduction of area, feed and inclination angles, there should be a positive correlation between the rotational speed of the rollers and the material input rate for production of geometrically sound copper pipes. This finding brought the possibility of determining the suitable combinations of the influential variables for the production of geometrically sound pipe. These combinations can be summarized as the planetary rolling process windows at different area reductions, varying feed and inclination angles. These process windows show that by increasing the area reduction, the production range of the pipe becomes confined to the limited ranges.

Keywords


  1. Brensing, K.H. and Sommer, B., 2008. Steel tube and pipe manufacturing processes. Salzgitter Mannersmann Rohrenwerke, 1, pp.1-63.
  2. Mikhalkin, D.V., Korsakov, A.A., Alyutina, E.V., Khramkov, E.V., Aleshchenko, A.S., Galkin, S.P., Gamin, Y.V., Bol’nykh, K.V. and Krivonogov, I.N., 2020. Improvement of the precision of pipes with the use of profiled pipe billets. Metallurgist, 64, pp.315-321.
  3. Shih, C.K. and Hung, C., 2003. Experimental and numerical analyses on three-roll planetary rolling process. Journal of materials processing technology, 142(3), pp.702-709.
  4. Nakasuji, K., Kuroda, K. and Hayashi, C., 1991. Development and features of rotary reduction mill. ISIJ international, 31(6), pp.620-627.
  5. Fomin, A.V., Aleshchenko, A.S., Maslenniko, I.M., Galkin, S.P. and Nikulin, A.N., 2019. Structural and analytical evaluation of the strain intensity and its components during cross-roll piercing at different feed angles. Metallurgist, 63, pp.477-486.
  6. Hwang, Y.M., Hu, H.L. and Tang, Y.C., 2004. Experiments of three-roll planetary rolling. In Key Engineering Materials (Vol. 274, pp. 769-774). Trans Tech Publications Ltd.
  7. Hwang, Y.M., Tsai, W.M., Tsai, F.H. and Her, I., 2006. Analytical and experimental study on the spiral marks of the rolled product during three-roll planetary rolling processes. International Journal of Machine tools and manufacture, 46(12-13), pp.1555-1562.
  8. Cho, H.Y., Han, K.B., Kim, K.W., Kim, J.H., Lee, J.R. and Choi, J.W., 2009. Finite Element Analysis of copper tube rolling process using the Planetary rolling mill. In Proceedings of the Korean Society of Precision Engineering Conference (pp. 481-482). Korean Society for Precision Engineering.
  9. Lee, J.K., Han, K.B., Kim, K.W., Choe, J.W., Kim, J.H. and Cho, H.Y., 2010. FEA of copper tube rolling process using the planetary rolling mill. Journal of Advanced Marine Engineering and Technology, 34(2), pp.303-309.
  10. Tomczak, J., Pater, Z., Bulzak, T., Lis, K., Kusiak, T., Sumorek, A. and Buczaj, M., 2021. Design and technological capabilities of a CNC skew rolling mill. Archives of Civil and Mechanical Engineering, 21, pp.1-17.
  11. Shih, C.K., Hung, C. and Hsu, R.Q., 2001. The finite element analysis on planetary rolling process. Journal of Materials Processing Technology, 113(1-3), pp.115-123.
  12. Li, B., Zhang, S.H., Zhang, G.L. and Zhang, H.Q., 2008. Prediction of 3-D temperature field of TP2 copper tubes in three-roll planetary rolling process. Journal of materials processing technology, 205(1-3), pp.370-375.
  13. Hwang, Y.M., Hsu, H.H. and Tzou, G.Y., 1998. A study of PSW rolling process using stream functions. Journal of Materials Processing Technology, 80, pp.341-344.
  14. Luo, C., Keife, H. and Chunhui, L., 2008. Friction in three-roll planetary tube rolling process. Met Form, 1, pp.447-452.
  15. Goncharuk, A.V., Zhigulev, G.P., Fartushnyi, R.N. and Onuchin, A.B., 2008. Billet centering and grooving in a helical rolling mill. Steel in Translation, 38, pp.210-213.
  16. Zeng, Q.L., Zang, Y. and Qin, Q., 2015. The effect of roll with passive segment on the planetary rolling process. Advances in Mechanical Engineering, 7(3), p.1687814015571013.
  17. Chikalov, S.G., Klempert, E.D., Golubchik, R.M., Merkulov, D.V. and Novikov, M.V., 2007. Obtaining the required range of continuous-cast pipe blanks for piercing. Steel in Translation, 37(3), pp.305-308.
  18. Nakasuji, K., Kuroda, K. and Hayashi, C., 1995. Effects of rolling conditions on rolling load, rolling torque and power consumption in heavy reduction rolling by the rotary reduction mill. ISIJ international35(2), pp.188-196.
  19. Panov, E.I., 2005. Shear Stresses and their dependence on different process parameters in the helical rolling of solid semifinished products. Metallurgist, 49(7-8), pp.280-292.
  20. Han, Y., Zhang, X.B., Wang, Z.X., Xiao, Y., Gao, X.L. and Zhao, Y.Q., 2020. Study on cooling process of copper tube after three-roll planetary rolling. International Communications in Heat and Mass Transfer, 110, p.104393.
  21. Li, B., Zhang, S.H., Zhang, G.L., Zhang, H.Y. and Zhang, H.Q., 2007. Microstructure simulation of copper tube and its application in three roll planetary rolling. Materials science and technology, 23(6), pp.715-722.
  22. Iordache, D.M., Oprescu, E.R., Malea, C.I., Niţu, E.L., Crăcănel, M.O. and Bădulescu, C., 2021, October. Determination of Johnson-Cook material constants for Copper using traction tests and inverse identification. In IOP Conference Series: Materials Science and Engineering (Vol. 1182, No. 1, p. 012032). IOP Publishing.
  23. Abaqus/Explicit User's Manual, 2016, Version 6.18, Dassault Systèmes.