Manufacturing of fine-grained AZ80 surface composites by friction stir processing: A review

Document Type : Review Paper

Author

School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran

10.22059/jufgnsm.2025.01.04

Abstract

This review paper deals with the friction stir processing (FSP) for manufacturing of metal-matrix composites (MMCs) based on the Mg-8Al-0.5Zn (AZ80) magnesium alloy. Accordingly, the reported investigations on the AZ80 surface composites with various reinforcements, including the carbon nanotubes (CNTs), high-entropy alloys (HEAs), hybrid reinforcements, and composite plates, were summarized. Accordingly, the effects of introducing the second-phase particles, tool rotation rate, tool traverse speed, tool design, and vibration were considered. In this regard, the grain refinement by dynamic recrystallization (DRX) and Zener pinning effect, the uniformity of the particle distribution and avoiding agglomeration, and improvement of mechanical properties and wear behavior were critically discussed. Moreover, useful suggestions for future works were proposed, including focusing on the common reinforcing phases and processing parameters, tensile testing to evaluate the strength-ductility balance, metal additive manufacturing processes, and the correlation of DRX grain size with the Zener–Hollomon parameter similar to hot deformation studies.

Keywords


  1.  

    1. Malik, A. and Wang, Y., 2023. A short review on high strain rate superplasticity in magnesium-based composites materials. International Journal of Lightweight Materials and Manufacture, 6(2), pp.214-224.
    2. Ahmad, R., Yin, B., Wu, Z. and Curtin, W.A., 2019. Designing high ductility in magnesium alloys. Acta Materialia, 172, pp.161-184.
    3. Meng, S., Xiao, H., Song, J., Bi, G., Wang, Q., Wang, Z., Yu, H. and Liu, H., 2024. Research progress and future prospects on high speed extrudable magnesium alloys: A review. Journal of Materials Research and Technology, 30, pp.9007-9019.
    4. Penghuai, F., Liming, P., Haiyan, J., Wenjiang, D. and Chunquan, Z., 2014. Tensile properties of high strength cast Mg alloys at room temperature: A review. China Foundry, 11(4), pp.277-286.
    5. Maleki, M., Rostami, H., Mirzadeh, H. and Emamy, M., 2024. Improved ductility of hot extruded Mg-0.5 Zn-0.5 Zr-1RE alloy by Li addition. Journal of Materials Research and Technology, 30, pp.5820-5825.
    6. Kalayeh, P.M., Asadi, A.H., Mirzadeh, H., Malekan, M., Emamy, M. and Mahmudi, R., 2024. Tailoring the microstructure and mechanical properties of LPSO-containing Mg–Ni cast alloy by yttrium addition. Journal of Materials Research and Technology, 28, pp.744-751.
    7. Maghzi, M., Mirzadeh, H. and Mahmudi, R., 2025. Grain refinement and improved mechanical properties of as-cast Mg-3Gd alloy by Zr addition. Journal of Materials Research and Technology, 35, pp.2346-2353.
    8. Pourbahari, B., Mirzadeh, H. and Emamy, M., 2018. The effects of grain refinement and rare earth intermetallics on mechanical properties of as-cast and wrought magnesium alloys. Journal of Materials Engineering and Performance, 27, pp.1327-1333.
    9. Golrang, M., Mobasheri, M., Mirzadeh, H. and Emamy, M., 2020. Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5 Ca-0.5 RE magnesium alloy. Journal of Alloys and Compounds, 815, p.152380.
    10. Ghorbani, F., Mirzadeh, H., Dehghanian, C. and Emamy, M., 2025. Tailored mechanical properties and corrosion resistance of as-cast Mg-7Zn-0.5 Zr-0.5 Ca alloy via multi-step homogenization treatment. Journal of Alloys and Compounds, 1016, p.178980.
    11. Motallebi, R., Savaedi, Z. and Mirzadeh, H., 2022. Post-processing heat treatment of lightweight magnesium alloys fabricated by additive manufacturing: a review. Journal of Materials Research and Technology, 20, pp.1873-1892.
    12. Abedi, H., Emamy, M., Rassizadehghani, J., Mirzadeh, H. and Ra'ayatpour, M., 2022. Enhanced mechanical properties of as-cast rare earth bearing magnesium alloy via elevated-temperature homogenization. Materials Today Communications, 31, p.103821.
    13. Kalayeh, P.M., Mirzadeh, H., Malekan, M., Emamy, M. and Mahmudi, R., 2024. Improved hardness of Mg-0.5 Ni-xY alloys via grain refinement and formation of LPSO structures. Journal of Materials Research and Technology, 30, pp.6829-6835.
    14. Salehzadeh-Nobari, I., Emamy, M., Ra'ayatpour, M. and Mirzadeh, H., 2022. Microstructures and mechanical performance of Mg–4Si–6Ni–x Y in situ composite after extrusion process. Materials Science and Technology, 38(3), pp.169-180.
    15. Rezaei Moghadam, M., Malekan, M., Emamy, M. and Mirzadeh, H., 2021. Enhanced mechanical properties of Mg–Ni–x RE alloys via hot extrusion. Materials Science and Technology, 37(16), pp.1285-1290.
    16. Mirzadeh, H., 2021. High strain rate superplasticity via friction stir processing (FSP): a review. Materials Science and Engineering: A, 819, p.141499.
    17. Malik, A., Masood Chaudry, U., Hamad, K. and Jun, T.S., 2021. Microstructure features and superplasticity of extruded, rolled and SPD-processed magnesium alloys: a short review. Metals, 11(11), p.1766.
    18. Gerashi, E., Alizadeh, R. and Mahmudi, R., 2022. Improved corrosion resistance and mechanical properties of biodegradable Mg–4Zn–xSr alloys: effects of heat treatment, Sr additions, and multi-directional forging. Journal of Materials Research and Technology, 20, pp.3363-3380.
    19. Savaedi, Z., Motallebi, R., Mirzadeh, H., Aghdam, R.M. and Mahmudi, R., 2023. Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review. Current Opinion in Solid State and Materials Science, 27(2), p.101058.
    20. Maleki, M., Jamei, F., Emamy, M. and Mirzadeh, H., 2023. Microstructure and mechanical properties of as-cast and wrought Mg–Ni in-situ formed alloys. Materials Science and Technology, 39(8), pp.985-993.
    21. Khorasani, F., Emamy, M., Malekan, M., Mirzadeh, H., Pourbahari, B., Krajnák, T. and Minárik, P., 2019. Enhancement of the microstructure and elevated temperature mechanical properties of as-cast Mg‑Al2Ca‑Mg2Ca in-situ composite by hot extrusion. Materials Characterization, 147, pp.155-164.
    22. Maleki, M., Emamy, M., Dehghanian, C. and Mirzadeh, H., 2022. On the solidification characteristics and corrosion resistance of in situ Mg–3Si–xCu composites. Vacuum, 206, p.111559.
    23. Mirzadeh, H., 2015. Quantification of the strengthening effect of reinforcements during hot deformation of aluminum-based composites. Materials & Design, 65, pp.80-82.
    24. Harwani, D., Badheka, V., Patel, V., Li, W. and Andersson, J., 2021. Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants–A review. Journal of Materials Research and Technology, 12, pp.2055-2075.
    25. Khodabakhshi, F., Derazkola, H.A. and Gerlich, A.P., 2020. Monte Carlo simulation of grain refinement during friction stir processing. Journal of Materials Science, 55, pp.13438-13456.
    26. Sarkari Khorrami, M., Kazeminezhad, M., Miyashita, Y. and Kokabi, A.H., 2017. The correlation of stir zone texture development with base metal texture and tool-induced deformation in friction stir processing of severely deformed aluminum. Metallurgical and Materials Transactions A, 48, pp.188-197.
    27. Mirzadeh, H., 2023. Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review. Journal of Materials Research and Technology, 25, pp.7050-7077.
    28. Roostaei, M., Parsa, M.H., Mahmudi, R. and Mirzadeh, H., 2015. Hot compression behavior of GZ31 magnesium alloy. Journal of Alloys and Compounds, 631, pp.1-6.
    29. Mirzadeh, H. and Najafizadeh, A., 2010. Extrapolation of flow curves at hot working conditions. Materials Science and Engineering: A, 527(7-8), pp.1856-1860.
    30. Mishra, R.S., Ma, Z.Y. and Charit, I., 2003. Friction stir processing: a novel technique for fabrication of surface composite. Materials Science and Engineering: A, 341(1-2), pp.307-310.
    31. Wang, W., Han, P., Peng, P., Zhang, T., Liu, Q., Yuan, S.N., Huang, L.Y., Yu, H.L., Qiao, K. and Wang, K.S., 2020. Friction stir processing of magnesium alloys: a review. Acta Metallurgica Sinica (English Letters), 33, pp.43-57.
    32. Sarkari Khorrami, M., Samadi, S., Janghorban, Z. and Movahedi, M., 2015. In-situ aluminum matrix composite produced by friction stir processing using FE particles. Materials Science and Engineering: A, 641, pp.380-390.
    33. Malik, V. and Saxena, K., 2022. Understanding tool–workpiece interfacial friction in friction stir welding/processing and its effect on weld formation. Advances in Materials and Processing Technologies, 8(sup4), pp.2156-2172.
    34. Sarkari Khorrami, M., Kazeminezhad, M. and Kokabi, A.H., 2014. The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum. Materials Science and Engineering: A, 602, pp.110-118.
    35. Khodabakhshi, F. and Gerlich, A.P., 2018. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review. Journal of Manufacturing Processes, 36, pp.77-92.
    36. Mirzadeh, H., 2023. Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review. International Journal of Minerals, Metallurgy and Materials, 30(7), pp.1278-1296.
    37. Shafiei-Zarghani, A., Kashani-Bozorg, S.F. and Zarei-Hanzaki, A., 2009. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering: A, 500(1-2), pp.84-91.
    38. Sabbaghian, M., Shamanian, M., Akramifard, H.R. and Esmailzadeh, M., 2014. Effect of friction stir processing on the microstructure and mechanical properties of Cu–TiC composite. Ceramics International, 40(8), pp.12969-12976.
    39. Sarkari Khorrami, M., Kazeminezhad, M. and Kokabi, A.H., 2015. Influence of stored strain on fabricating of Al/SiC nanocomposite by friction stir processing. Metallurgical and Materials Transactions A, 46, pp.2021-2034.
    40. Zolghadr, P., Akbari, M. and Asadi, P., 2019. Formation of thermo-mechanically affected zone in friction stir welding. Materials Research Express, 6(8), p.086558.
    41. Nasiri, Z., Sarkari Khorrami, M., Mirzadeh, H. and Emamy, M., 2021. Enhanced mechanical properties of as-cast Mg-Al-Ca magnesium alloys by friction stir processing. Materials Letters, 296, p.129880.
    42. Mehranpour, M.S., Heydarinia, A., Emamy, M., Mirzadeh, H., Koushki, A. and Razi, R., 2021. Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation. Materials Science and Engineering: A, 802, p.140667.
    43. Mirzadeh, H., 2014. A comparative study on the hot flow stress of Mg–Al–Zn magnesium alloys using a simple physically-based approach. Journal of Magnesium and Alloys, 2(3), pp.225-229.
    44. 44. Afsharnaderi, A., Lotfpour, M., Bahmani, A., Mirzadeh, H., Malekan, M., Emamy, M., Fatehi Mollayousef, M. and Bornay Zonoozi, S., 2023. Enhanced corrosion resistance of the as-cast AZ91 magnesium alloy by micro-addition of the strontium and rare earth elements. Materials Science and Technology, 39(17), pp.2885-2899.
    45. Koushki, A., Heydarinia, A., Emamy, M., Mirzadeh, H. and Mehranpour, M.S., 2022. Tailoring the tensile properties of AZ91 magnesium alloy via grain refinement. Materials Science and Technology, 38(17), pp.1434-1438.
    46. Pourbahari, B., Emamy, M. and Mirzadeh, H., 2017. Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Progress in Natural Science: Materials International, 27(2), pp.228-235.
    47. Wang, W., Han, P., Peng, P., Guo, H., Huang, L., Qiao, K., Hai, M., Yang, Q., Wang, H., Wang, K. and Wang, L., 2020. Superplastic deformation behavior of fine-grained AZ80 magnesium alloy prepared by friction stir processing. Journal of Materials Research and Technology, 9(3), pp.5252-5263.
    48. Giuliano, G. ed., 2011. Superplastic forming of advanced metallic materials: methods and applications. Elsevier.
    49. Pushpanathan, D.P., Muthukumar, V., Rajasekar, R. and Prem Kumar, S., 2022, May. Investigations on the microstructure and microhardness of the friction stir processed AZ80 surface composites. AIP Conference Proceedings, 2463(1), p.020059.
    50. Chen, Y.H., Mao, Y.Q., Xie, J.L., Zhan, Z.L. and Yu, L., 2017. Microstructure and microwave absorption properties of MWCNTs reinforced magnesium matrix composites fabricated by FSP. Optoelectronics Letters, 13, pp.1-4.
    51. Ma, W., Ojo, O.O., Paidar, M., Mehrez, S., Zain, A.M., Kulandaivel, A., Mohanavel, V. and Kannan, S., 2023. Improving the wear resistance and mechanical properties of hybridized AZ80 Mg/CeO2+ ZrO2 surface composite by friction stir processing: Effect of pin geometry. Vacuum, 212, p.111980.
    52. Wei, Z., Kulandaivel, A., Hermanto, T., Vignesh, R.V., Mehrez, S., Paidar, M., Zain, A.M. and Mohanavel, V., 2023. An investigation on mechanical and wear behavior of friction-stir-processed hybrid AZ80/CeO2+ BN surface composite. Materials Letters, 346, p.134532.
    53. Mao, W., Paidar, M., Vignesh, R.V., Kharche, N.A., Mohanavel, V. and Zain, A.M., 2024. Exploring the impact of vibration on the tribological and mechanical performance of friction stir processing of AZ80/(MnO+ ZrO2) p surface composite. Materials Letters, 358, p.135794.
    54. Guo, C., Jasim, D.J., Paidar, M., Mahariq, I., Šlapáková, M., Alfredi, D., Mehrez, S. and Zou, Y., 2024. Unveiling the vibration effect on microstructure and tribological characteristics of AZ80 Mg/AlCrFeMoNb surface composite developed by friction stir processing. Vacuum, 230, p.113667.
    55. Liu, F.C., Liu, Q., Huang, C.P., Yang, K., Yang, C.G. and Ke, L.M., 2013, April. Microstructure and corrosion resistance of AZ80/Al composite plate fabricated by friction stir processing. In Materials Science Forum (Vol. 747, pp. 313-319). Trans Tech Publications Ltd.
    56. Jamshidijam, M., Akbari-Fakhrabadi, A., Masoudpanah, S.M., Hasani, G.H. and Mangalaraja, R.V., 2013. Wear behavior of multiwalled carbon nanotube/AZ31 composite obtained by friction stir processing. Tribology transactions, 56(5), pp.827-832.
    57. Soltani, M., Shamanian, M. and Niroumand, B., 2015. Surface Characteristics Improvement of AZ31B Magnesium by Surface Compositing with Carbon Nano-tubes through Friction Stir Processing. International Journal of Advanced Design and Manufacturing Technology, 1(1), p.85.
    58. Alavi Nia, A. and Nourbakhsh, S.H., 2016. Microstructure and mechanical properties of AZ31/SiC and AZ31/CNT composites produced by friction stir processing. Transactions of the Indian Institute of Metals, 69(7), pp.1435-1442.
    59. Rezayat, M., Gharechomaghlu, M., Mirzadeh, H. and Parsa, M.H., 2016. A comprehensive approach for quantitative characterization and modeling of composite microstructures. Applied Mathematical Modelling, 40(19-20), pp.8826-8831.
    60. Commin, L., Dumont, M., Masse, J.E. and Barrallier, L., 2009. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters. Acta materialia, 57(2), pp.326-334.
    61. Chang, C.I., Lee, C.J. and Huang, J.C., 2004. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta materialia, 51(6), pp.509-514.
    62. Dehghani, K. and Chabok, A., 2011. Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels. Materials Science and Engineering: A, 528(13-14), pp.4325-4330.
    63. Jamili, A.M., Zarei-Hanzaki, A., Abedi, H.R., Mosayebi, M., Kocich, R. and Kunčická, L., 2020. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Materials Science and Engineering: A, 775, p.138837.
    64. Fatemi-Varzaneh, S.M., Zarei-Hanzaki, A. and Beladi, H., 2007. Dynamic recrystallization in AZ31 magnesium alloy. Materials Science and Engineering: A, 456(1-2), pp.52-57.
    65. Maleki, M., Berndorf, S., Mohammadzehi, S., Mirzadeh, H., Emamy, M., Ullmann, M. and Prahl, U., 2023. Grain refinement and improved mechanical properties of Mg-4Zn-0.5 Ca-0.5 RE magnesium alloy by thermomechanical processing. Journal of Alloys and Compounds, 954, p.170224.
    66. Barnett, M.R., Beer, A.G., Atwell, D. and Oudin, A., 2004. Influence of grain size on hot working stresses and microstructures in Mg–3Al–1Zn. Scripta Materialia, 51(1), pp.19-24.
    67. Sharma, D.K., Badheka, V., Patel, V. and Upadhyay, G., 2021. Recent developments in hybrid surface metal matrix composites produced by friction stir processing: a review. Journal of Tribology, 143(5), p.050801.
    68. Jalilvand, M.M. and Mazaheri, Y., 2020. Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing. Ceramics International, 46(12), pp.20345-20356.
    69. Jalilvand, M.M., Mazaheri, Y., Heidarpour, A. and Roknian, M., 2019. Development of A356/Al2O3+ SiO2 surface hybrid nanocomposite by friction stir processing. Surface and Coatings Technology, 360, pp.121-132.
    70. Li, H., Paidar, M., Ojo, O.O., Vignesh, R.V., Iswandi, I., Mehrez, S., Zain, A.M. and Mohanavel, V., 2023. Effect of tool profile on wear and mechanical behaviors of CeO2 and ZrO2-reinforced hybrid magnesium matrix composite developed via FSP technique. Journal of Manufacturing Processes, 94, pp.297-315.
    71. Keshavarz, H., Kokabi, A. and Movahedi, M., 2023. Microstructure and mechanical properties of Al/graphite-zirconium oxide hybrid composite fabricated by friction stir processing. Materials Science and Engineering: A, 862, p.144470.
    72. Naseri, M., Moghadam, A.O., Anandkumar, M., Sudarsan, S., Bodrov, E., Samodurova, M. and Trofimov, E., 2024. Enhancing the mechanical properties of high-entropy alloys through severe plastic deformation: A review. Journal of Alloys and Metallurgical Systems, 5, p.100054.
    73. Motallebi, R., Savaedi, Z. and Mirzadeh, H., 2022. Superplasticity of high-entropy alloys: a review. Archives of Civil and Mechanical Engineering, 22, p.20.
    74. Daryoush, S., Mirzadeh, H. and Ataie, A., 2021. Nanostructured high-entropy alloys by mechanical alloying: A review of principles and magnetic properties. Journal of Ultrafine Grained and Nanostructured Materials, 54(1), pp.112-120.
    75. Khodashenas, H. and Mirzadeh, H., 2022. Post-processing of additively manufactured high-entropy alloys-A review. Journal of Materials Research and Technology, 21, pp.3795-3814.
    76. Pandey, V., Seetharam, R. and Chelladurai, H., 2024. A comprehensive review: Discussed the effect of high-entropy alloys as reinforcement on metal matrix composite properties, fabrication techniques, and applications. Journal of Alloys and Compounds, p.175095.
    77. Aali, E., Rabiei, N., Sarkari Khorrami, M. and Soltani, R., 2025. Fabrication of AA6061/AlCoCrFeNi high-entropy alloy surface composite through flame spraying and friction stir processing. Materials Chemistry and Physics, 333, p.130358.
    78. Abdollahzadeh, A., Bagheri, B., Abbasi, M., Sharifi, F. and Moghaddam, A.O., 2021. Mechanical, wear and corrosion behaviors of AZ91/SiC composite layer fabricated by friction stir vibration processing. Surface Topography: Metrology and Properties, 9(3), p.035038.
    79. Bagheri, B., Abdollahzadeh, A., Sharifi, F. and Abbasi, M., 2022. The role of vibration and pass number on microstructure and mechanical properties of AZ91/SiC composite layer during friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(5), pp.2312-2326.
    80. Bagheri, B., Abbasi, M., Abdollahzadeh, A. and Kokabi, A.H., 2020. A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites. International Journal of Minerals, Metallurgy and Materials, 27, pp.1133-1146.
    81. Akbarpour, M.R., Mirabad, H.M., Gazani, F., Khezri, I., Chadegani, A.A., Moeini, A. and Kim, H.S., 2023. An overview of friction stir processing of Cu–SiC composites: Microstructural, mechanical, tribological, and electrical properties. Journal of Materials Research and Technology, 27, pp.1317-1349.
    82. Asadi, P., Givi, M.B., Abrinia, K., Taherishargh, M. and Salekrostam, R., 2011. Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP. Journal of materials engineering and performance, 20, pp.1554-1562.
    83. Iwaszko, J., Kudła, K. and Fila, K., 2016. Friction stir processing of the AZ91 magnesium alloy with SiC particles. Archives of Materials Science and Engineering, 77(2), pp.85-92.
    84. Akramifard, H.R., Shamanian, M., Sabbaghian, M. and Esmailzadeh, M., 2014. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Materials & Design (1980-2015), 54, pp.838-844.
    85. Ahmadkhaniha, D., Heydarzadeh Sohi, M., Salehi, A. and Tahavvori, R., 2016. Formations of AZ91/Al2O3 nano-composite layer by friction stir processing. Journal of Magnesium and Alloys, 4(4), pp.314-318.
    86. Faraji, G., Dastani, O. and Mousavi, S.A., 2011. Microstructures and mechanical properties of Al2O3/AZ91 surface nanocomposite layer produced by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8), pp.1331-1345.
    87. Dadaei, M., Omidvar, H., Bagheri, B., Jahazi, M. and Abbasi, M., 2014. The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy. International Journal of Materials Research, 105(4), pp.369-374.
    88. Khayyamin, D., Mostafapour, A. and Keshmiri, R., 2013. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Materials Science and Engineering: A, 559, pp.217-221.
    89. Padmanaban, R. and Govindaraju, M., 2020. Synthesis and characterization of magnesium alloy surface composite (AZ91D-SiO2) by friction stir processing for bioimplants. Silicon, 12(5), pp.1085-1102.
    90. Patle, H., Sunil, B.R. and Dumpala, R., 2020. Sliding wear behavior of AZ91/B4C surface composites produced by friction stir processing. Materials Research Express, 7(1), p.016586.
    91. Yuvaraj, N. and Aravindan, S., 2015. Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. Journal of materials research and technology, 4(4), pp.398-410.
    92. Balakrishnan, M., Dinaharan, I., Palanivel, R. and Sivaprakasam, R., 2015. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. Journal of Magnesium and Alloys, 3(1), pp.76-78.
    93. Sahoo, B.N., Khan, F., Babu, S., Panigrahi, S.K. and Ram, G.J., 2018. Microstructural modification and its effect on strengthening mechanism and yield asymmetry of in-situ TiC-TiB2/AZ91 magnesium matrix composite. Materials Science and Engineering: A, 724, pp.269-282.
    94. Zhang, Z., Yang, R., Guo, Y., Chen, G., Lei, Y., Cheng, Y. and Yue, Y., 2017. Microstructural evolution and mechanical properties of ZrB2/6061Al nanocomposites processed by multi-pass friction stir processing. Materials Science and Engineering: A, 689, pp.411-418.
    95. Babu, N. and Megalingam, A., 2023. Microstructural, mechanical and tribological characterization of ZrB2 reinforced AZ31B surface coatings made by friction stir processing. Journal of Adhesion Science and Technology, 37(2), pp.195-212.
    96. Ahmadkhaniha, D., Fedel, M., Heydarzadeh Sohi, M., Zarei-Hanzaki, A. and Deflorian, F., 2016. Corrosion behavior of magnesium and magnesium–hydroxyapatite composite fabricated by friction stir processing in Dulbecco’s phosphate buffered saline. Corrosion Science, 104, pp.319-329.
    97. Ratna Sunil, B., Sampath Kumar, T.S., Chakkingal, U., Nandakumar, V. and Doble, M., 2014. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. Journal of Materials Science: Materials in Medicine, 25, pp.975-988.
    98. Dinaharan, I., Zhang, S., Chen, G. and Shi, Q., 2020. Development of titanium particulate reinforced AZ31 magnesium matrix composites via friction stir processing. Journal of Alloys and Compounds, 820, p.153071.
    99. Dinaharan, I., Zhang, S., Chen, G. and Shi, Q., 2020. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing. Materials Science and Engineering: A, 772, p.138793.
    100. Dinaharan, I. and Akinlabi, E.T., 2018. Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Composites Communications, 9, pp.22-26.
    101. Patle, H., Sunil, B.R. and Dumpala, R., 2021. Machining characteristics, wear and corrosion behavior of AZ91 magnesium alloy‐fly ash composites produced by friction stir processing. Materialwissenschaft und Werkstofftechnik, 52(1), pp.88-99.
    102. Tabandeh-Khorshid, M., Kumar, A., Omrani, E., Kim, C. and Rohatgi, P., 2020. Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Composites Part B: Engineering, 183, p.107664.
    103. Vahedi, F., Zarei-Hanzaki, A., Salandari-Rabori, A., Razaghian, A., Abedi, H.R. and Minarik, P., 2019. Texture evolution and wear properties of a frictionally stir processed magnesium matrix composite reinforced by micro graphite and nano graphene particles. Materials Research Express, 6(10), p.1065c6.
    104. Madadi, R., Pishbin, S.M.H., Fatemi, S.M., Zarei, A. and Cho, J.H., 2024. Friction stir processing of pure titanium/nanodiamonds nanocomposites: Microstructure, tribological and corrosion properties. Materials Today Communications, 40, p.109975.
    105. Wu, B.L., Peng, Y.C., Tang, H.Q., Meng, C.C., Zhong, Y.F., Zhang, F.L. and Zhan, Y.Z., 2023. Improving grain structure and dispersoid distribution of nanodiamond reinforced AA6061 matrix composite coatings via high-speed additive friction stir deposition. Journal of Materials Processing Technology, 317, p.117983.
    106. Yu, H., Xin, Y., Wang, M. and Liu, Q., 2018. Hall-Petch relationship in Mg alloys: A review. Journal of Materials Science & Technology, 34(2), pp.248-256.
    107. Carvalho, A.P. and Figueiredo, R.B., 2023. An overview of the effect of grain size on mechanical properties of magnesium and its alloys. Materials Transactions, 64(7), pp.1272-1283.
    108. Figueiredo, R.B., Kawasaki, M. and Langdon, T.G., 2024. The role of grain size in achieving excellent properties in structural materials. Journal of Materials Research and Technology, 30, pp.3448-3462.
    109. Sabbaghian, M. and Mahmudi, R., 2021. Superplasticity of the fine-grained friction stir processed Mg–3Gd–1Zn sheets. Materials Characterization, 172, p.110902.
    110. Eivani, A.R., Mehdizade, M., Chabok, S. and Zhou, J., 2021. Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy. journal of materials research and technology, 12, pp.1946-1957.
    111. Tripathi, A., Tewari, A., Kanjarla, A.K., Srinivasan, N., Reddy, G.M., Zhu, S.M., Nie, J.F., Doherty, R.D. and Samajdar, I., 2016. Microstructural evolution during multi-pass friction stir processing of a magnesium alloy. Metallurgical and Materials Transactions A, 47, pp.2201-2216.
    112. Hofmann, D.C. and Vecchio, K.S., 2005. Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials. Materials Science and Engineering: A, 402(1-2), pp.234-241.
    113. Darras, B. and Kishta, E., 2013. Submerged friction stir processing of AZ31 Magnesium alloy. Materials & Design, 47, pp.133-137.
    114. Khorrami, M.S., Kazeminezhad, M., Miyashita, Y., Saito, N. and Kokabi, A.H., 2017. Influence of ambient and cryogenic temperature on friction stir processing of severely deformed aluminum with SiC nanoparticles. Journal of Alloys and Compounds, 718, pp.361-372.
    115. Zangene, D., Kayvandarian, F., Khodabakhshi, F., Malekan, M. and Hájovská, Z., 2024. Nickel-aluminum bronze (NAB) alloy design under two-steps casting and submerged friction stir processing. Materials Science and Engineering: A, 890, p.145960.
    116. Charit, I. and Mishra, R.S., 2008. Abnormal grain growth in friction stir processed alloys. Scripta materialia, 58(5), pp.367-371.
    117. Pourbahari, B., Mirzadeh, H. and Emamy, M., 2017. Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures. Journal of Materials Research, 32(22), pp.4186-4195.
    118. Shirdel, M., Mirzadeh, H. and Parsa, M.H., 2014. Abnormal grain growth in AISI 304L stainless steel. Materials characterization, 97, pp.11-17.
    119. Naghizadeh, M. and Mirzadeh, H., 2016. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metallurgical and Materials Transactions A, 47, pp.5698-5703.
    120. Shirdel, M., Mirzadeh, H. and Habibi Parsa, M., 2014. Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metallurgical and Materials Transactions A, 45, pp.5185-5193.
    121. Jamei, F., Mirzadeh, H. and Zamani, M., 2019. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Materials Science and Engineering: A, 750, pp.125-131.
    122. Mishra, R.S. and Ma, D.Z., 2005. Friction stir welding and processing. Materials science and engineering: R: reports, 50(1-2), pp.1-78.
    123. Patel, V., Li, W., Liu, X., Wen, Q., Su, Y., Shen, J. and Fu, B., 2020. Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate. Materials Science and Engineering: A, 784, p.139322.
    124. Shang, J., Ke, L., Liu, F., Lv, F. and Xing, L., 2019. Aging behavior of nano SiC particles reinforced AZ91D composite fabricated via friction stir processing. Journal of Alloys and Compounds, 797, pp.1240-1248.
    125. Bhadouria, N., Kumar, P., Thakur, L., Dixit, S. and Arora, N., 2017. A study on micro-hardness and tribological behaviour of nano-WC–Co–Cr/multi-walled carbon nanotubes reinforced AZ91D magnesium matrix surface composites. Transactions of the Indian Institute of Metals, 70, pp.2477-2483.
    126. Liu, F.C., Feng, A.H., Pei, X., Hovanski, Y., Mishra, R.S. and Ma, Z.Y., 2024. Friction stir based welding, processing, extrusion and additive manufacturing. Progress in Materials Science, p.101330.
    127. Hassan, A., Pedapati, S.R., Awang, M. and Soomro, I.A., 2023. A comprehensive review of friction stir additive manufacturing (FSAM) of non-ferrous alloys. Materials, 16(7), p.2723.
    128. Srivastava, A.K., Kumar, N. and Dixit, A.R., 2021. Friction stir additive manufacturing–An innovative tool to enhance mechanical and microstructural properties. Materials Science and Engineering: B, 263, p.114832.
    129. Rathee, S., Srivastava, M., Pandey, P.M., Mahawar, A. and Shukla, S., 2021. Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies. CIRP Journal of Manufacturing Science and Technology, 35, pp.560-588.
    130. Palanivel, S., Nelaturu, P., Glass, B. and Mishra, R.S., 2015. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Materials & Design (1980-2015), 65, pp.934-952.
    131. Joshi, S.S., Patil, S.M., Mazumder, S., Sharma, S., Riley, D.A., Dowden, S., Banerjee, R. and Dahotre, N.B., 2022. Additive friction stir deposition of AZ31B magnesium alloy. Journal of Magnesium and Alloys, 10(9), pp.2404-2420.
    132. Ho, Y.H., Man, K., Joshi, S.S., Pantawane, M.V., Wu, T.C., Yang, Y. and Dahotre, N.B., 2020. In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioactive materials, 5(4), pp.891-901.
    133. Dixit, A.R., Srivastava, A.K., Dwivedi, S., Nag, A. and Hloch, S., 2023. An investigation on microstructural features and bonding strength of magnesium-based multifunctional laminated composite developed by friction stir additive manufacturing. The International Journal of Advanced Manufacturing Technology, 128(1-2), pp.531-546.
    134. Xiao, Y., Shi, L., Wu, C., Li, S., Chen, J. and Ren, W., 2025. Microstructure evolution and mechanical properties of ZK61 magnesium alloy fabricated via friction stir additive manufacturing. Journal of Materials Research and Technology, 34, pp.1379-1390.
    135. Williams, M.B., Robinson, T.W., Williamson, C.J., Kinser, R.P., Ashmore, N.A., Allison, P.G. and Jordon, J.B., 2021. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43. Metals, 11(11), p.1739.
    136. Wang, H., Li, Y., Yang, B., Wang, J., Lai, R., Wang, Z. and Li, Y., 2025. Understanding the processing, microstructure, and deformation behavior of AZ31B Mg alloy fabricated by additive friction stir deposition. Journal of Materials Processing Technology, p.118781.