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1. Introduction
Bulk metallic glasses have attracted much at-

tention due to superior strength, significant elas-
tic strain, and resistance to corrosion and wear 
compared to conventional crystalline alloys [1-3]. 
Among the various alloying systems with high 
glass-forming ability, the Cu-Zr based system is 
particularly interesting for engineering applica-
tions, as it constitutes relatively inexpensive el-
ements. However, the low glass forming ability 
(GFA) of this alloying system is a limitation for real 
applications [3-9]. In fact, this system has a lower 
GFA than BMGs containing Be or Pd, and efforts 
are ongoing to compensate for this problem.

It is well known that the GFA of Cu-Zr system 

can increase by adding a third element such as Al, 
Ti, Ni or Ag to composition. Among all, Cu-Zr-Al 
alloys have been considered due to their high GFA 
and superior mechanical properties. Moreover, it 
has been shown that rare earth elements such as 
Lu, Y, Nb and Dy rare earths has positive effects 
on GFA and mechanical properties of Cu-Zr-Al 
alloy. However, the exact effects of these elements 
on physical and mechanical properties of Cu-Zr-Al 
system have not been properly known [9-12]. 

Despite extensive studies in the field of Cu-Zr 
based BMGs [8-15], a detailed theoretical study on 
the reason for choosing Zr as an additive element 
to Cu-based BMGs and the its optimal percentage 
has not been properly presented. In addition, the 

In the present work, the effects of Al and Nb elements on the formation of glassy phase in Cu-Zr based bulk metallic 
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exact effect of Al and Nb elements on the structural 
and mechanical properties of Cu-Zr based BMGs 
has not been evaluated. So, the present work focus-
es on the investigation about the effect of Al and 
Nb as the third and fourth component on the for-
mation of glassy phase in Cu50Zr50-xAlx and (Cu50Z-
r43Al7)100-xNbx systems. Theoretical investigations 
(based on the Miedema model [16, 17]) about the 
effect of different elements on GFA of Cu-Zr based 
BMGs is another goal of this research.

2. Materials and methods
In the presented work, high purity (≥99.5%) 

Cu, Zr, Al and Nb elements were used as row ma-
terials. Cu50Zr50-xAlx (x=0, 3.5, 7 at.%) and (Cu50Z-
r43Al7)100-xNbx (x=1, 3, 5 at.%) ingots were prepared 
using arc melting method. For the chemical homo-
geneity, each ingot was melted three times, and fi-
nally, cylindrical rods with 2 mm in diameter and 
30 mm in length of were prepared using injection 
casting method in water-cooled copper mold.

The structural characteristics of the samples 
were investigated using Philips PW3710 X-ray 
diffraction (XRD) with Cu-Kα radiation at 40 kV 

(2θ range: 20-80o; step size: 0.05o; time per step 1 
s). The microstructural and morphological charac-
terizations of the prepared samples were investigat-
ed using transmission electron microscopy (TEM, 
Jeol-JEM-3010) and scanning electron microscopy 
(SEM, VEGA-TESCAN-XMU). Mechanical prop-
erties of the samples were also determined using 
Instron testing machine. Uniaxial compression 
test was performed on as-solidified samples under 
strain rate of 5×10-4 s-1 at environment temperature. 

3. Results and discussion
Miedema’s model  is a semi-empirical approach 

for estimating the heat of formation of solid or liq-
uid metal alloys and compounds in the framework 
of thermodynamic calculations for metals and 
minerals. It may provide or confirm basic en-
thalpy data needed for the calculation of phase 
diagrams of metals, via CALPHAD or ab initio 
quantum chemistry methods [16, 17]. In this re-
gard, the mixing enthalpy (ΔHmix.)   of various ele-
ments to copper (calculated based on the Miedema 
model) are presented in Table. 1. As can be seen, 
among all elements introduced in this table, only 

 

Fig.1. The formation enthalpy of amorphous phase (ΔHamor.) of a) Cu1-xZrx, b) Cu1-xAlx and c) 

Cu1-xTix systems; calculated based on the Miedema method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. The formation enthalpy of amorphous phase (ΔHamor.) of Cu-Zr-Al ternary system; 

calculated based on the Miedema method. 

 

 

 

 

 

Table 1- The mixing enthalpy (ΔHmix.) of various elements to copper calculated based on the Miedema model

Fig. 1- The formation enthalpy of amorphous phase (ΔHamor.) of 
a) Cu1-xZrx, b) Cu1-xAlx and c) Cu1-xTix systems; calculated based 

on the Miedema method.

Fig. 2- TThe formation enthalpy of amorphous phase (ΔHamor.) 
of Cu-Zr-Al ternary system; calculated based on the Miedema 

method.
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the mixing enthalpy of Pt, Zr, Pd, Al, Ti and Au in 
copper is negative, and therefore these elements 
can be effective on increasing the GFA of Cu-bas-
es alloys. Of course, Pd, Au and Pt are expensive 
elements and this limitation makes Cu-Zr, Cu-Al 
and Cu-Ti systems more attractive for engineering 
applications. In this regard, the formation enthalpy 
of amorphous phase (ΔHamor.) of Cu1-xZrx, Cu1-xAlx 
and Cu1-xTix alloying systems are presented in Fig. 
1. According to this figure several point can be con-
cluded as:

1. The formation enthalpy of Cu-Zr amorphous 
phase is more negative than Cu-Al and Cu-Ti sys-
tems. In other words, Zr is the best choice for de-
signing the chemical composition Cu-based BMGs. 

2. The lowest values of ΔHamor. in Cu1-xZrx system 
occur in 40<x<50 and alloys containing 40-50 at.% 
of Zr are recommended for preparing Cu-Zr based 
BMGs. 

3.  Aluminum is a suitable choice as the third 
additive element to further increase in glass form-
ing ability of Cu-Zr system. In this regard, the for-

mation enthalpy of amorphous phase of Cu-Zr-Al 
ternary system are presented in Fig. 2. In fact, this 
figure confirms the positive effect of aluminum in 
increasing GFA of Cu-Zr based BMGs. This result 
is in agreement with presented results with other 
researchers about the positive effect of Al on in-
creasing in GFA of Cu-Zr based BMGs [18-21].

To confirm the positive effect of Al on increasing 
the GFA of Cu-Zr alloying system, the XRD spec-
tra of as-solidified Cu50Zr50-xAlx (x=0, 3.5, 7) rods 
are presented in Fig. 3. As can be seen, the addition 
of Al has a significant effect on increasing GFA in 
the investigated composition. The XRD pattern of 
as-solidified Cu50Zr50 sample (x=0) consists of sev-
eral sharp peaks corresponding to B2-CuZr and 
Cu10Zr7 crystalline phases. The SEM micrograph 
of this sample in Fig. 4 also confirm the precipi-
tation of blade like crystalline Cu10Zr7 phase with 
average particle sizes of about 300 nm in matrix. 
Cu10Zr7 phase belongs to the Aba2 space group 
and has a Pearson’s symbol of oC68, with Ni10Zr7 
type structure [18].  In contrast, the XRD pattern 

 

 

Fig. 3. The XRD patterns of as-solidified Cu50Zr50-xAlx (x=0, 3.5, 7) rods with 2 mm in diameter; 

a) x=0, b) x=3.5 and c) x=7. 
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(b) 

Fig. 4. The SEM micrographs of as-solidified Cu50Zr50 rod with 2 mm in diameter at two 

magnifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4- The SEM micrographs of as-solidified Cu50Zr50 rod with 2 mm in diameter at two magnifications.

Fig. 3- The XRD patterns of as-solidified Cu50Zr50-xAlx (x=0, 3.5, 7) rods with 2 mm in diameter; a) x=0, b) x=3.5 and c) x=7.
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of Cu50Zr46.5Al3.5 as-solidified sample exhibits an 
amorphous hump and distinguishable B2-CuZr 
austenite (Pm-3m space group, a=0.3256 nm [18]) 
crystalline peaks. The SEM micrographs of this 
sample in Fig. 5 shows the non-uniform distri-
bution of spherical deposits of B2-CuZr in amor-
phous matrix. As can be seen, the size and distribu-
tion of the precipitates formed along the radius of 
the rod is not uniform and is more refined towards 
the outer region of the rod due to the higher cool-
ing rate achieved in the injection casting process. It 
is important to note that, the B2-CuZr phase is un-
stable and can only be obtained at the certain rate 
of solidification [13]. As seen in Fig. 3 (c), the XRD 
pattern of Cu50Zr43Al7 sample only consists of one 
broad diffuse peak without any evidence of crys-
talline peaks. The lack of crystalline peaks in this 
XRD pattern confirms the disordered nature of this 
sample which is in agreement with the presented 

TEM image in Fig. 6. 
The compression stress-stain curves of as-solid-

ified Cu50Zr50-xAlx (x=0, 3.5, 7) samples with 2 mm 
in diameter are presented in Fig. 7. Based on this 
figure, the maximum strength value in the analyzed 
samples reaches 2050 MPa in Cu50Zr46.5Al3.5 sam-
ple. Meanwhile, unlike the other two samples, this 
composition has shown plastic ductility up to about 
2.1%. In other words, among investigated samples, 
only the Cu50Zr46.5Al3.5 alloy showed plastic behavior 
and other samples broke brittlely during compres-
sion test. In fact, the work hardening and plasticity 
of as-solidified Cu50Zr46.5Al3.5 sample can be related 
to the precipitation of metastable B2-CuZr austenite 
phase as shown in Fig. 3 (b). This phase transform 
into a B19′-CuZr martensitic phase with P21/m 
space group during deformation (deformation-in-
duced phase transformation [18-21]) and causes 
the sample to show plastic behavior. The presented 
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(b) 

Fig. 5. The SEM micrographs of as-solidified Cu50Zr46.5Al3.5 rod with 2 mm in diameter at two 

magnifications. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The TEM image of as-solidified Cu50Zr43Al7 rod with 2-mm in diameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6- The TEM image of as-solidified Cu50Zr43Al7 rod with 2-mm in diameter.

Fig. 4- The SEM micrographs of as-solidified Cu50Zr46.5Al3.5 rod with 2 mm in diameter at two magnifications.
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results are consistent with the fracture surface SEM 
micrographs of the samples after compression test 
in Fig. 8. Based on this figure, all fracture surfaces 
have vein-like pattern but with different morphol-
ogies which can be related to plasticity. In fact, the 
plasticity of BMGs is highly concentrated in locally 
deformed shear bands (SBs), while a rapid expan-
sion of a SB leads to catastrophic failure, but the 

interaction between multiple SBs reduces the rapid 
expansion of SBs, thereby improving the plasticity 
of the BMGs [19]. In contrast, the characteristics 
of the vein-like pattern are related to the plasticity 
and strength of BMGs. A high density and small-
er size of the vein-like patterns indicate fairly good 
plasticity and strength of the BMGs [20]. From the 
Fig. 8, it can be observed that there are many SBs 

 

Fig. 7. The compression true stress-stain curves of as-solidified Cu50Zr50-xAlx (x=0, 3.5, 7) rods 

with 2 mm in diameter; a) x=0, b) x=3.5 and c) x=7. 

 

 

 

 

 

 

 

 

 

 

Fig. 7- The compression true stress-stain curves of as-solidified Cu50Zr50-xAlx (x=0, 3.5, 7) rods with 2 mm in diameter; a) x=0, b) x=3.5 
and c) x=7.
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(b) 

 

(c) 

 

(d) 

Fig. 8. The SEM fractured surface morphologies of as-solidified Cu50Zr50-xAlx rods; a-b) x=0, c-

d) x=3.5. 

 

 

 

 

 

 

 

Fig. 8- The SEM fractured surface morphologies of as-solidified Cu50Zr50-xAlx rods; a-b) x=0, c-d) x=3.5.
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on Cu50Zr46.5Al3.5 (x=3.5) alloy, and the interaction 
between SBs inhibits the rapid expansion of SBs, 
thus its plasticity is improved. In contrast, Cu50Zr50 
(x=0) alloy has the least level of SBs, so its plasticity 

is lower than Cu50Zr46.5Al3.5 (x=3.5). 
It has been found that rare earth elements can 

have a positive effect on increasing the ability to 
form the glass phase in Cu-Zr-Al alloys. In this re-

 

 

 

 

Fig. 9. The XRD patterns of as-solidified (Cu50Zr43Al7)100-xNbx (x=0, 1, 3, 5) rods (with 2-mm in 

diameter); a) x=0, b) x=1, c) x=3 and d) x=5. 

 

 

 

 

 

 

 

Fig. 9- The XRD patterns of as-solidified (Cu50Zr43Al7)100-xNbx (x=0, 1, 3, 5) rods (with 2-mm in diameter); a) x=0, b) x=1, c) x=3 and d) 
x=5.

 

(a) 

 

(b) 

Fig. 10. The SEM micrographs of as-solidified (Cu50Zr43Al7)95Nb5 rod (in two magnifications) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10- The SEM micrographs of as-solidified (Cu50Zr43Al7)95Nb5 rod (in two magnifications).
 

 

Fig. 11. The compression true stress-stain curves of as-solidified (Cu50Zr43Al7)100-xNbx (x=0, 1, 

3, 5) rods (with 2-mm in diameter); a) x=0, b) x=1, c) x=3 and d) x=5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11- The compression true stress-stain curves of as-solidified (Cu50Zr43Al7)100-xNbx (x=0, 1, 3, 5) rods (with 2-mm in diameter); 
a) x=0, b) x=1, c) x=3 and d) x=5.
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search, Nb was selected as an additive element of 
Cu50Zr43Al7 alloy. The XRD patterns of as-solidi-
fied (Cu50Zr43Al7)100-xNbx (x=0, 1, 3, 5) rods with 
2-mm in diameter are displayed in Fig. 9. As can 
be seen, a broad diffraction halo without detectable 
crystalline peaks are main characteristics of cor-
responding XRD patterns to x≤1. In contrast, the 
presented XRD patterns in Fig. 9 (c) & (d) revels 
that, the structure of as-solidified samples with x>1 
compose of B2-CuZr, Cu10Zr7 and Nb-rich crys-
talline phases. However, the precipitation of Nb-
rich phase in presented XRD patterns (which is in 
agreement with presented SEM micrographs in Fig. 
10) confirm the tendency of Nb element to segrega-
tion during solidification. In fact, the segregation of 
Nb, has destructive effects on glass forming ability 
of Cu-Zr-Al system and has led to the precipitation 
of unwanted phases during solidification. In other 
word, the Nb had a negative effect on the formation 
of the glassy phase in the investigated composition.

The stress-strain curves of rapid-solidified 
(Cu50Zr43Al7)100-xNbx (0, 1, 3, 5) samples are present-
ed in Fig. 11. As seen, all Nb-containing samples 
show lower compressive fracture strength (1000-
1650 MPa) in comparison with Cu50Zr43Al7 BMG 
(1980 MPa). The SEM micrographs of lateral frac-
ture and fracture surface morphology of (Cu50Z-
r43Al7)99Nb1 sample are shown in Fig. 12. Based 
on this figure, the fracture surface of this sample 
includes a fully developed vein-like pattern that 
is known as a characteristic in monolithic BMGs 
[14]. As seen, this sample fractures catastrophi-
cally along one dominates shear plane, which are 
visible on the lateral surface (The fracture angle of 

45o). These evidences justify the lack of plasticity in 
these samples. In fact, the segregation of Nb during 
solidification process and precipitation of brittle 
B2-CuZr and Cu10Zr7 phases are the main reasons 
of lower ductility and compressive strength in the 
presence of Nb element. In other word, the addi-
tion of Nb has destructive effects on glass form-
ing ability, the homogeneity and final mechanical 
properties of Cu-Zr-Al BMGs. 

4. Conclusion
In this work, the effect of Al and Nb on the for-

mation of glassy phase in Cu50Zr50-xAlx and (Cu50Z-
r43Al7)100-xNbx systems were evaluated. The results 
illustrated that; 

1. Al has a positive effect on increasing the glass 
forming ability (GFA) of Cu-Zr system, and it is 
possible to create a completely glassy structure in 
Cu50Zr43Al7 sample.

2. The maximum strength value in Cu50Zr50-

xAlx samples reaches 2050 MPa in the x=3.5 com-
bination. Meanwhile, unlike the other samples, 
this composition has shown plastic ductility up to 
about 2.1% as a result of precipitation of metastable 
B2-CuZr during solidification.

3. In contrast to Al, Nb has a destructive effect 
on glass forming ability of Cu50Zr43Al7 based bulk 
metallic glasses. This element has a great tendency 
to separate and form Nb-rich phases, which causes 
a sharp decrease in the final mechanical properties. 

4. As-solidified samples containing Nb showed 
compressive fracture strength in the range of 
1000-1650 MPa, which was much lower than 
compressive strength of Nb-free alloy. 

 

(a) 

 

(b) 

Fig. 9. The SEM micrographs of a) lateral and b) fracture surface of rapid-solidified 

(Cu50Zr43Al7)99Nb1 sample. 

 

Fig. 12- The SEM micrographs of a) lateral and b) fracture surface of rapid-solidified (Cu50Zr43Al7)99Nb1 sample.
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