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Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are 
widely applied for modification of materials property in engineering science in large scale modeling. In 
this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal 
conditions for achieving the maximum hardness of Al6061 reinforced by multiwall carbon nanotubes 
(MWCNTs) through modeling of nanocomposite characteristics. After examination the different ANN 
architectures an optimal structure of the model, i.e. 6-18-1, is obtained with 1.52% mean absolute error 
and R2 = 0.987. The proposed structure was used as fitting function for genetic algorithm. The results of GA 
simulation predicted that the combination sintering temperature 346 °C, sintering time 0.33 h, compact 
pressure 284.82 MPa, milling time 19.66 h and vial speed 310.5 rpm give the optimum hardness, (i.e., 
87.5 micro Vickers) in the composite with 0.53 wt% CNT. Also, sensitivity analysis shows that the sintering 
time, milling time, compact pressure, vial speed and amount of MWCNT are the significant parameter and 
sintering time is the most important parameter. Comparison of the predicted values with the experimental 
data revealed that the GA–ANN model is a powerful method to find the optimal conditions for preparing 
of Al6061-MWCNT.

1. Introduction 
Since the original work of Iijima in 1991 [1], 

carbon nanotubes (CNTs) have been recognized 
to possess outstanding attributes [2], in particular 
in the area of nanotechnology. One of the most 
important usages of CNTs is in the production 
process of composites, where CNTs are applied 
as new reinforcement and binders to enhance the 
mechanical, electrical and thermal properties [3–
5]. CNTs have high potential usage due to their 
very large aspect ratio (1000–10,000) [6], low 

density, high rigidity (Young’s modulus of the order 
of 1TPa) [7–8] and high tensile strength (up to 60 
GPa) [9]. In addition, the thermal conductivity of 
multiwalled carbon nanotubes (MWCNTs) was 
assigned to be >3000 W/mK [10], making them 
suitable selection in preparing composites with 
improved properties. However, most researches are 
carried out on CNTs/polymer composites [11–13] 
which indicate a tremendous strengthening effect 
for the composites. Therefore, CNTs–metal matrix 
composites are also expected to notice the role of 
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structural materials. 
In the field of metal-matrix composites, Al 

composites have been paid so much attention due 
to their wide usage in industries because of their 
light weight, high strength as well as good corrosion 
resistance. However, no important breakthrough 
has yet been made on CNTs-reinforced Al matrix 
composites. Especially the obstacles associated 
with the interfacial bonding between CNTs and 
Al matrix and lack of suitable synthesis method 
to gain a homogenous dispersion of CNTs and 
Al matrix. This is mostly because of the strong 
van der Waal’s force of attraction between them 
leading to agglomeration rather than dispersion. 
Therefore, the development of bulk fabrication 
procedure for Al–CNTs composite was started 
on the basis of a mechanical milling procedure 
[14, 15] to find a uniform distribution of CNTs 
in Al matrix. Mechanical milling is a solid-state 
high-energy ball milling method where particles 
are repeatedly fractured and welded [16] and has 
been applied to disperse uniformly a variety of 
reinforcement materials within Al matrix [17]. 
Few other processes that have been applied are 
roll-bonding followed by annealing [18], plasma 
spray forming [19], liquid infiltration [20] and high 
pressure torsion [21]. To the best of our knowledge, 
the powder metallurgy was an appropriate method 
for producing MWCNTs reinforced Al-matrix 
composites [22–24]. This procedure mostly 
consists of mechanical milling of MWCNTs with 
Al powder either in dry or wet situations followed 
by compaction and sintering.

An engineering technique to optimize the 
process factors is based on the utilization of 
artificial neural network and genetic algorithm. 
Artificial neural network is a powerful non-linear 
strategy for simulation of complicated materials 
behavior [25]. This strategy can learn and predict 
the experiential knowledge with setting the 
weight and bias in neuron but cannot determine 
the optimum condition and might be hampered 
in the local minimum. Genetic algorithm (GA) 
is a population-based evolutionary search and 
optimization process, which needs the definition of 
a selection, a crossover and a mutation of genetic 
information, to evolve into the next generations 
with potentially solutions of a particular problem. 
The present study was carried out using combined 
GA-ANN due to their flexibility over the general 
regression processes to determine a suitable process 
conditions for Al6061-MWCNT nanocomposite. 

To confirm the predictions of GA, the Al6061-
MWCNT samples were made as presented by GA 
condition.

2. Artificial Neural Network Modeling
Among artificial intelligence approaches, 

artificial neural networks (ANNs) are widely 
employed and are some of the powerful method 
for problems in many spheres [26-27]. ANNs are 
consist of numerous of interconnected nonlinear 
memory less processing elements called neurons. 
The neurons of each layer are linked to that of the 
next layer through associated weights. The network 
applies the information of these weights to solve 
the problems. A connected neuron formula is 
presented as (eq. 1):

𝑥𝑥 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥 + 𝑏𝑏 

𝑝𝑝

𝑖𝑖=1
 

 

                                                       
(eq. 1)

Where b shows the bias of neurons, p presents 
the number of elements and wi is the weight of the 
input vector xi. Each neuron receives the sum of the 
weight inputs with bias and employs the activation 
function to confirm its output signal, as presented 
in (eq. 2):

𝑓𝑓(𝑥𝑥) = 𝑓𝑓 (∑ 𝑤𝑤𝑖𝑖𝑥𝑥 + 𝑏𝑏 

𝑝𝑝

𝑖𝑖=1
) 

 

                                          
(eq. 2)

Where the transfer function (f) of the neuron 
shows the hyperbolic tangent sigmoid (tansig) 
activation function (Fig.1), which in the present 
study is given as (eq. 3):
𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑥𝑥) − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑥𝑥)

𝑒𝑒𝑥𝑥𝑒𝑒(𝑥𝑥) + 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑥𝑥) 

 

                                        
(eq. 3)

Between neural network techniques, feed-
forward back-propagation (BP) neural network is 
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Fig. 1- Shape of hyperbolic tangent sigmoid (tansig) function.
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extensively applied to presenting effective solutions 
in the engineering applications especially in 
material science [28-30]. BP learning is based on 
the difference between the output value determined 
by the model and the desired value to improve the 
interconnection values, which include the weights 
and the biases of the processing neurons. A BP 
network includes one input, one or two hidden, 
and one output layers. 

Based on the investigation by Hornick, 
Stinchcombe, and White [31-33], one to two 
hidden layers could show appropriate training 
results. The typical feed-forward ANNS are 
presented in Fig. 2. Before applying a feed-forward 
BP network, the architecture of the network has 
to be set because it affects the performance of the 
network, significantly. Five factors, including the 
number of hidden layer and neurons, the learning 
method, and activation function for hidden layer 
and output layer are the characteristics of an ANN 
structure. Usually, the determination strategy 
of these network factors is trial and error. To 
determine the best architectures of feed-forward 
back propagation ANN a program was developed 
to train and evaluate the various architectures with 
a various number of neurons in one hidden layer 
(1 up to 30) while, other parameter is fixed. In 
this paper used Levernberg-Marquardt algorithm 
(LM) as training strategy while hyperbolic tangent 
sigmoid (tansig) as activation function in the 
hidden layer and output layer. Fig. 3 shows the 

program flowchart. Developing a BP network 
model involves applying a large number of training 
sets and training cycles to adjust the weight and the 
bias of each neuron. 

The hardness of Al6061-MWCNT nanocomposite 
that prepared by mechanical alloying and sintering 
is a function of average diameter of CNT, average 
length of CNT, average metal particle size, amount 
of reinforcement compaction pressure, milling 
time, sintering temperature, sintering time, 
vial speed. These features were chosen as input 
variables in ANN model while the hardness of 
nanocomposite was the output parameter. In order 
to ANN modeling, a database containing 46 various 
independent hardness experiments of Al6061-CNT 
nanocomposites collected from different works 
[34-37], where 37 and 9 group of data randomly 
selected for train and validate, respectively. Table 1 
displays the statistical information of the developed 
database. In this paper, the minimal mean-
absolute-percentage-error (MAPE) of the training 
and testing sets has been anticipated. MAPE is 
determined as the average absolute error between 
the predicted outputs of the established network 
and the target outputs (given as (eq. 4)):
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝐿𝐿 [  ∑  
𝐿𝐿

𝑖𝑖=1

|𝑇𝑇𝑖𝑖   − 𝑀𝑀𝑖𝑖 |
𝑇𝑇𝑖𝑖

 ] × 100 

 

                       
(eq. 4)

Where L displays the number of samples, Ti 
is the actual output value of sample i, and Pi is 
the predicted output value of sample i. Usually, 
the smaller the MAPE, the more acceptable the 
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Fig. 2- Typical feed-forward neural networks.
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constructed network is. After repeated training, the 
relationship between the inputs and the predicted 
outputs might be determined to meet the actual 
outputs via the functional model of the neural 
network.

3. Genetic Algorithm (GA)
GA is the search strategy based on the mechanics 

of natural selection and natural genetics to discover 
the best solution for specific environment or 
problem conditions [38]. GA starts with generating 
random initial population consisted of potential 
solution points (or individuals). The value set for 
each individual from the evaluation procedure 
with objective function is named the fitness. The 
decision is made whether the individual is good 
or bad for the particular problem, based on the 
magnitude of fitness value. Once fitness value is 
tested and assigned to each individual, then the 
initial population meets the first genetic operator, 
selection procedure. 

The purpose of this step is to give more chances 
of survival for the strong individuals and to die 
off the weakest ones according to their fitness 
values. Next, crossover operator is done on selected 
individuals to generate the new individuals by 
combination of the existing ones [39]. Crossover 
performs reproduction and allows two individuals 
to exchange portions of their structures based on a 
particular probability. Which chromosomes to cross 
and where to cut them is performed statistically 
based on a particular probability. This results in the 
creation of a pair of new chromosomes that contain 
features of their parents [40, 41]. This process can 
be compared to the natural evolution procedure 
generating new children from the parents. Finally, 
the mutation operator follows the crossover 
procedure. Mutation operators for the real-valued 
representation have been proposed by Michalewicz 
[42]. The major role of mutation procedure is to 
present the diversity in the population. Without 
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Tansig activation 
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Fig. 3- The flowchart of finding suitable the ANN architecture.

Parameters Maximum Minimum Average Standard deviation 

Input variable 

Amount of reinforcement (wt. %) 

Sintering temperature (°C) 

Sintering time (h) 

Compact pressure (MPa) 

Milling time (h) 

Vial speed (rpm) 

 

Output variable 

Hardness (HV) 

 

2 

640 

2 

500 

30 

1200 

 

87.5 

 

0 

30 

0.33 

35 

0.5 

200 

 

 

48.2 

 

0.84 

472.93 

1.09 

240.76 

13.84 

473.91 

 

 

62.63 

 

0.68 

176.36 

0.8 

229.95 

14.33 

413.03 

 

 

8.34 

 

Table 1- The statistical information of the developed datasets
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the mutation, it is hard to obtain the solution point 
that is located far from the current direction of 
search. It insures that the probability of obtaining 
any point in the search space never go to zero 
[43]. This operator also prevents the premature 
convergence of GA to one of the local optimal 
solutions. Once all three main operators are done 
on the initial population, the new population is 
developed. This new population is genetically 
superior to the previous one and has better chance 
to survive for the given problem features. Then this 
entire procedure is repeated until the satisfaction 
is obtained or it reaches the maximum number 
of generations which is pre-set by users. Fig. 4 
presents the genetic algorithm operator procedure 
in simplicity.

4. The Combined GA–ANN Model
The following stage involves the development 

of the GA population of the input parameters for 
utilization in the probabilistic based optimum 
search. This is followed by the prediction the system 
outputs using an ANN model of the system [44, 
45]. For mechanical features of Al6061-MWCNT 
nanocomposite in this investigation, the fitness 
function commonly addresses higher hardness 
in ANN model. Once the outputs are determined 
through the ANN computation, the relevant 
outputs are exerted to the fitness function routine 
to set the latest values and compared. While, the 
fitness requirements are being adjusted from time 
to time, a new generation of the population will be 
generated and gone through the same evaluation 
procedures. This procedure continues until the 
maximum number of generation has been obtained. 
The final population of the generation is defined the 
‘‘winner’’ and rewarded the conclusive generation 
of final fitness. Fig. 5 introduces a summary outline 
of the optimization plan. GA and ANN methods 
were implemented in MATLAB software (version 
2014b).

5. Results And Discussion
The ANN modeling program results show that 

the best ANN structure has 18 neurons in hidden 
layer with 1.52% error among 30 structures, as 
shown in Fig. 6. The predicted values, deviation 
and % error for the hardness is presented in Tables 
2 and 3 and a comparative plot of real and predicted 
values for training and testing is presented in Fig. 7. 
The close linear trend between the ANN predicted 
and experimentally observed values for the output 
parameters indicate the adjacency of the model 
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pressure (MPa) 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

 

0 

1 

0 

1 

0.5 

0.5 

1.5 

0 

1 

1.5 

2 

1 

1 

1.5 

0.5 

0.5 

1 

0 

2 

2 

1 

0.75 

0 

0 

1 

1 

2 

0 

0.75 

0 

1 

2 

0 

1 

0.75 

1 

2 

MAPE 

30 

640 

525 

640 

30 

400 

30 

640 

450 

450 

450 

640 

525 

525 

500 

600 

600 

640 

600 

500 

640 

450 

400 

600 

500 

400 

400 

450 

400 

640 

450 

450 

500 

30 

500 

620 

30 

 

2 

0.5 

2 

0.5 

2 

0.33 

2 

0.5 

2 

2 

2 

0.5 

2 

2 

0.33 

2 

2 

0.5 

2 

0.33 

0.5 

0.33 

0.33 

2 

0.33 

0.33 

0.33 

0.33 

0.33 

0.5 

0.33 

0.33 

0.33 

2 

0.33 

0.5 

2 

 

500 

50 

500 

50 

500 

35 

500 

50 

500 

500 

500 

50 

500 

500 

35 

500 

500 

50 

500 

35 

50 

35 

35 

500 

35 

35 

35 

35 

35 

50 

35 

35 

35 

500 

35 

50 

500 

 

30 

3 

30 

1 

30 

1 

30 

3 

30 

30 

30 

2 

30 

30 

1 

30 

30 

3 

30 

1 

0.5 

1 

1 

30 

1 

1 

1 

1 

1 

1 

1 

1 

1 

30 

1 

3 

30 

 

280 

1200 

280 

1200 

280 

200 

280 

1200 

280 

280 

280 

1200 

280 

280 

200 

280 

280 

1200 

280 

200 

1200 

200 

200 

280 

200 

200 

200 

200 

200 

1200 

200 

200 

200 

280 

200 

1200 

280 

 

52 

76.5 

55 

60.4 

53 

59.1 

60 

62 

59 

62 

66 

71.1 

61 

66 

65.7 

58 

62 

61.5 

76 

68 

49.3 

67.6 

56.8 

57 

69.3 

63.3 

53 

66.3 

60 

53.2 

71.3 

59 

70 

57 

66.1 

87.5 

62 

1.44 

52.01 

78.02 

55.01 

56.78 

52.59 

59.18 

60.86 

61.66 

58.89 

61.97 

65.42 

68.51 

61.02 

66.03 

65.55 

56.89 

62.01 

61.66 

75.98 

67.86 

52.98 

67.6 

60.73 

57.17 

69.29 

63.52 

52.8 

67.16 

59.8 

49.83 

70.75 

59.21 

69.88 

57.05 

66.31 

80.63 

63.4 

 

-0.01 

-1.52 

-0.01 

3.61 

0.4 

-0.08 

-0.86 

0.33 

0.1 

0.02 

0.57 

2.58 

-0.02 

-0.03 

0.14 

1.1 

-0.01 

-0.16 

0.01 

0.13 

-3.68 

0 

-3.93 

-0.17 

0 

-0.22 

0.19 

-0.86 

0.19 

3.36 

0.54 

-0.21 

0.11 

-0.05 

-0.21 

6.86 

-1.4 

 
 

Table 2- Experimental data and predicted output from the ANN network for training set
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with the experimental dataset.
The sensitivity analysis was carried out to 

set the relative significance of each of the input 
parameters. The aim of the analysis was to decrease 
the number of input parameters should they prove 
to be insignificant in model performance. The 
reduction of input parameters would result in a 
decrease in unnecessary data collection, which 
leads to cost reduction. A step-by-step method 
was executed on the trained ANN by changing 
each of the input parameter, one at a time, at a 
constant rate. Different constant rates (5, 10) were 
chosen in this paper. For every input parameter, the 
percentage was modified in the output as a result of 
the change in the input parameter. The sensitivity 
of each input parameters was computed by the 
following equation [46]:

𝑆𝑆𝑖𝑖
 (%) = 1

𝑁𝑁 ∑ (%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑎𝑎 𝑖𝑖𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 )

𝑗𝑗
× 100

𝑁𝑁

𝑗𝑗=1
 
                

(eq. 5)

Where Si (%) shows the sensitivity level of an 
input parameter and N (= 9) is the number of 

datasets used for sensitivity test. Fig. 8 presents the 
sensitivity of variations for mechanical properties 
at each of the input variables. It can be seen that 
the sintering time and milling time are the two 
most important factors. This analysis showed 
that sintering temperature and sintering time has 
a reverse effect on the hardness of Al6061-CNT 
nanocomposite. The former researches showed that 
the tendency of the reaction of carbon nanotubes 
with Al6061 and formation of Al4C3 is ascending by 
increasing the time and temperature of sintering. 
The presence of small amount of carbide at the 
interface of the CNT and matrix can improve the 
interfacial bonding but excessive carbide formation 
can result in overall degradation of the composite 
strength since the carbides have inferior properties 
compared with the CNTs. Furthermore, this could 
excessive when milling time is high [47, 48]. Milling 
time, vial speed, compact pressure and amount 
of MWCNT have positive effect on hardness. 
Increasing in milling time and vial speed makes 
MWCNTs uniformly and completely embedded in 
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MWNCT (wt. %) 

 

Sintering 

temperature (°C) 

Sintering 

time (h) 

Compact 

pressure (MPa) 

Milling 

time (h) 

Vial 

speed 

(rpm) 

Hardness (HV) 

Measured Predicted Error 
  

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

0 

1.5 

0 

0.5 

0 

0.5 

2 

0.5 

1 

MAPE 

640 

600 

640 

525 

450 

450 

525 

450 

600 

 

0.5 

2 

0.5 

2 

2 

2 

2 

0.33 

0.5 

 

50 

500 

50 

500 

500 

500 

500 

35 

50 

 

0.5 

30 

2 

30 

30 

30 

30 

1 

3 

 

1200 

280 

1200 

280 

280 

280 

280 

200 

1200 

 

48.2 

68 

55.5 

56 

54 

55 

71 

67 

83.3 

1.52 

49.49 

68.78 

52.61 

56.28 

53.26 

55.02 

71.66 

66.55 

82.29 

 

-1.29 

-0.78 

2.88 

-0.28 

0.73 

-0.02 

-0.66 

0.44 

1 

 
 

 

Table 3- Experiment data and predicted output from the ANN network for testing set.

 
Fig. 7- Regression analysis of predicted and experimental hardness for best structure: (a) Training data; (b) Testing data.
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the Al 6061 matrix and tighter bonding between the 
CNTs and Al 6061 which enhances the mechanical 
properties of the matrix [49]. Also, compact 
pressure influences green density of the samples 
which can lead to increase in sintering degree [34].

In this study, genetic algorithms with a single 
point crossover and roulette wheel selection have 
been applied. Each individual was produced with a 
fitness function, which was determined from ANN 
model. The initial population was selected to be 30, 
generation size 100 and the probability of crossover 
and probability of mutation were selected to be 
0.8 and 0.2, respectively. GA simulation predicted 
the combination sintering temperature 346 C, 
sintering time 0.33 h, compact pressure 284.82, 
milling time 19.66 and vial speed 310.5 to give 
optimum hardness of 87.5 micro Vickers in the 
composite with 0.53 wt% CNT. For evaluating the 
results, experiments were carried out at different 
configurations, results of which are summarized 
in Table 4. The optimum fitness function obtained 

experimentally was at condition of number 2 which 
was close to the conditions predicted by GA. This 
conclusively proves the validity of the simulated 
results.
6. Conclusion

The following conclusions are drawn from this 
work. ANN model with 18 neurons in hidden layer 
is a useful method for the prediction of hardness of 
Al6061 reinforced by multiwall carbon nanotubes 
where fabricated by mechanical alloying. The 
combined GA–ANN algorithm is an effective model 
for optimizing mechanical alloying parameters 
leading to maximum hardness in Al6061-MWCNT 
nanocomposite. Sensitivity analysis shows that the 
sintering time and milling time are most significant 
parameter and sintering time is the most important 
parameter among the experimental parameters 
used in this work.
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