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1. Introduction
Today, nanotechnology has a special application 

in medicine for making metal nanoparticles with a 
minimum size. There are several methods for making 
nanoparticles. In physical and chemical methods [1-
3], which are the common routes of nanoparticle 
synthesis, the use of toxic substances is inevitable. 
Therefore, there is an urgent need to develop 
green synthesis methods for metal nanoparticles 
[4, 5]. An attractive approach to achieve this aim 
is to exploit the potential of biological resources 
in nature. Over the years, fungi, bacteria, viruses, 
and plants have been used to make non-toxic 
nanoparticles at a lower cost and save more energy 

[6, 7]. The size of nanoparticles affects their unique 
properties, especially in the medical field. The size of 
synthesized nanoparticles, composition, structure, 
and morphology obtained due to the choice of 
extract plays a significant role in affecting their 
unique properties. Also, It should be noted that the 
role of opioids, including OS, which contains natural 
compounds, all act as analgesic neurotransmitters in 
the body that reduce pain in the body by affecting 
the central nervous system. In this regard, they 
are used in medicine [8-10]. Therefore, finding a 
way to determine the desired properties of AgNPs 
by considering experimental parameters in a way 
that achieves the minimum size is very important. 

In this study, gene expression programming (GEP) was used as a new method for the formulation of the size 
of silver nanoparticles (AgNPs) as functions of the AgNO3-to-opium syrup (OS) ratio, pH, temperature (T), 
agitation speed (AS) and feed rate (Fr) of reducing agent in green synthesis. The models differ from each 
other concerning their genes number, chromosomes, interconnected function, and head size. A total of 63 
samples were selected at different practical parameter products to generate databases for the new particle 
size formulations, testing, and training sets. The training and testing sets included 47 and 16 randomly 
selected mixtures for the proposed models. The best GEP model is found, and this final model can predict 
the size of AgNPs with a correlation coefficient (R2) of 0.828, a root means square error (RMSE) of 5.894, a 
root relative squared error (RRSE) of 0.44. All results in the models indicated an applicable performance for 
predicting the minimum particle size of the AgNPs and found it reliable. The predicted model showed that 
all of the input parameters affect the resulting particle size. GEP modeling results denoted that the selected 
GEP successfully predicts the behavior of the size of nanoparticles as functions of operating variables.
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So, finding accurate modeling to predict the size of 
nanoparticles is very useful [3, 11]. 

GEP has an inherent ability to model the 
engineering problems. The main advantages of GEP 
are the acceptable accuracy, easy to implement and 
does not require to the complex problem-solving 
procedures [12-14]. To the best of our knowledge, 
various methods have been used to predict the size 
of nanoparticles. However, modeling the effect 
of practical parameters and predicting the size of 
AgNPs with the help of opium syrup (OS) by GEP 
method has not been studied yet. In summery, the 
main contributions of this study are: (i) providing 
of an accurate model based on experimental date 
of green synthesis of AgNPs using OS by GEP; (ii) 
consideration of practical parameteres including 
AgNO3-to-OS ratio, AS, Fr of OS, pH, and T as inputs 
and the the size of AgNPs as output of GEP model, 
and (iii) usage of sensitivity analysis to investigate 
and ranke the effect of each input variable on the size 
of AgNPs. 

2. Experimental
OS-mediated bio-reduction is prepared by mixing 

OS with AgNO3. The preparation of nanoparticles 
takes place at different T and completes in 30 minutes.

2.1. Synthesis of AgNPs
To synthesis AgNPs, 1 mM solution of AgNO3 

(Merck 99.99 wt.% purity) as precursor and OS as 
reducing agent were used. The AgNPs were prepared 
using OS because of their medicinal properties. 
OS was prepared by International food service 
distributors association (IFDA) company. NaOH (98 
wt.% purity), HNO3 (65 wt.% purity) as adjusting 
of pH were supplied by Merck. A solution of 100 
mL AgNO3 1 mM was prepared at first. Adding 
OSs to 100 mL of 1 mM AgNO3 provided various 
concentrations of reactants. In this study, evaluation 
of several important experimental factors, including 
volume ratio (AgNO3-to-OS ratio as a reducing 
agent) of 20:1, 10:1, 20:3 and 5:1, Fr of 0.33, 0.66, 2 
and 10 (mL/min), AS = 100, 250, 300, 500 and 600 
rpm, pH = 5 to 8 and T = 25, 37, 50 and 65 °C were 
studied as inputs and AgNPs size as output. This 
setup was incubated in a dark chamber to minimize 
photo-activation of silver nitrate at different T. 
The changed color of the solution confirmed the 
reduction of Ag+ to Ag0 from colorless to dark 
brown. The reduced solution was centrifuged at 
15000 rpm for 20 min. The prepared AgNPs washed 
three times using the centrifugation process and 

deionized water and dried for further analysis. Due 
to the wide range and many affecting parameters, a 
test, called factorial D-optimal array, was designed 
and carried out to decrease the experiment data. 
The number of trials that were equal to 1280 trials 
in full factorial design decreased to 63 trials without 
declining the quality of data. In the synthesis of 63 
trials, the duration of 30 min is considered (Table 
1). For training and testing each GEP, these data 
were randomly divided into the training and testing 
sections. Accordingly, 47 schedules were applied for 
training, whereas 16 ones were used for testing. For 
training and testing of each GEP model, collected 
data randomly divided into two sections, including 
47 and 16 trials. The former section was applied for 
training, and the latter section was used for testing.

2.2. Characterization of AgNPs
The structures, phase analysis, and the average 

particle size of biosynthesis AgNPs were examined 
by X-ray diffraction (XRD) (Philips, X’pert-MPD 
system at 30 mA and 40 kV by Cu-Kα radiation) 
in 2θ between 30º and 90º. Scherer’s equation [15] 
was employed to calculate the size of AgNPs [16, 
17]. Further analysis of morphology and size of 
prepared samples were done using transmission 
electron microscopy (TEM) (PHILPS EM-208S) 
and environmental scanning electron microscope 
(ESEM) analysis. Moreover, the chemical point 
analyses were determined using energy dispersive 
spectroscopy (EDS) (Silicon Drift 2017, USA). 
Dynamic light scattering (DLS) (Malvern Ltd., 
Malvern, UK) was utilized to determine the 
distribution of the prepared sample. DLS analysis 
was carried out using distilled water at 25 °C, 
viscosity 0.8872 cP, and a refractive index of 1.33 as 
the solvent.

3. Definition of predictive model  
3.1. Genetic programming (GP)

Systems, artificial neural networks, GP, superficial 
logic, and adaptive neural-fuzzy logic are common 
soft techniques that are preferred if the amount of 
data available is appropriate. GP has only recently 
commenced to correctly formulate the properties 
and efficiency of engineering materials [18, 19]. GP 
is a pioneering learning method that uses Darwin’s 
theory to derive a symbolic regression model. 
Using intrinsic complexity to solve the problem 
distinguishes GP from other methods of using 
artificial intelligence for modeling. For example, 
machine learning solutions such as neural networks 
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Fig. 1-  GP structure.

and genetic algorithms (GA) use the form or scope of 
predetermined solutions [20]. GP, firstly proposed by 
Koza [21], takes its power from the biological natural 
selection system and automatically solves problems 
using a computer. The GP selects a population for 
modeling and then uses a random combination 
of chromosomes to find a more consistent state. 

The GP initializes a population and compounds 
the chromosomes known as random members. 
Then, considering the degree of consistency of the 
predicted data with the experimental data (or fitness 
function) as a criterion, the optimal state of the 
combination of chromosomes is selected. Figure 1 
presents the schematic of GP.

Table 1- Experimentally data series for the preparation of AgNPs by green synthesis

  
 

 

  Table 1. Experimentally data series for the preparation of AgNPs by green synthesis. 



183

Shafaei A, J Ultrafine Grained Nanostruct Mater, 54(2), 2021, 180-191

GP consists of combining various mathematical 
functions (power, sqrt, sin, tan, cos, log, ln) and 
operators (+, -, /) simultaneously to find the 
solutions. It is able to solve the problem while 
improving the program architecture of the general 
practitioner. In this study, empirical formulas 
were used for the prediction of the particle size of 
AgNO3. GP aims to find a program that matches the 
experimental results well. This side of the program 
is very important for catching the nearest solution. 
GP creates the first population randomly from the 
previously defined space. GP gives a program as an 
output to the user [22].

3.2. GEP
GEP is an advanced version of GP that allows 

the use of various forms encoded in the fixed-
length linear chromosomes with computer 
programs in various sizes and shapes. In other 
words, genes are used as smaller chromosome 
components to encode subroutines. Besides, the 
function and structure of linear chromosomes 
provide significant capabilities to the important 
genetic operators, including transposition, 
recombination, and mutation [12-14]. A 
significant advantage of GEP is that, given the 
sequence of a gene, it allows inferring exactly 
the phenotype and vice versa. It is known as the 
Karva language. In this language, it is possible 
to define the number of genes, the type of linker 
function, and the length of genes as a priori for 
each problem. The expression tree is the other 
approach in GEP to illustrate the output.

3.3. GEP structure and parameters
The experimental data used for the modeling of 

the particle size of AgNPs. If d0, d1, d2, d3, d4, and d5 
are input variables and the particle size is as output, 
the hidden functions connecting these variables 
are the major task in GEP. The formulas obtained 
by GEP can be used for estimating the relationship 
between the characteristics of the particle size 
of AgNPs. The variables of the GEP models were 
presented in Table 2.

The database (63 experiments in Table 1) is 
randomly divided into testing (47 experiments) 
and training (16 experiments) section [23] and 
used to construct the models. It is important to 
note that the proposed GEP models are valid only 
in the range of data collected in Table 2.

3.4. GEP formulations
Table 3 shows selected GEP parameters in 

this study using Gene Xpro Tools 5.00 software. 
As can be seen, chromosome number 30 has the 
best performance in GEP-1 to GEP-6 models to 
predict the AgNPs. Explicit formulations based 
on the GEP-1 to GEP-6 approach models for the 
size of AgNPs were obtained by consideration of 
AgNO3/OS, AS (rpm), Fr (mL/min), T (°C), and 
pH as effective parameters. The obtained related 
formulations of GEP-1 to GEP-6 models are in 
accordance with Table 4.

3.5. Evaluating the training of the GEP model 
In order to investigate the performance of the 

extracted equation using the GEP method, the 
accuracy was estimated using statistical indices 
including R2, RMSE, RRSE, and mean absolute 
error (MAE) (Eqs. 1-4) [24]:
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In which, n  is the total number of datasets, ti is 
measured values and pi is predicted values.

Theoretically, the model with an R squared 
near 1 and error indices (RMSE, RRSE, and MAE) 
closer to zero has higher performance. Table 5 
summarized these indices.

Table 2- The variables of the GEP models

  
 

 

Table 2. The variables of the GEP models. 
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Table 3- GEP parameters used to construct the models

Table 4- Explanation of mathematical equations for various GEP approaches

  
 

 

Table 3. GEP parameters used to construct the models. 

  
 

 

Table 4. Explanation of mathematical equations for various GEP approaches 

+
+

Table 5- Summaries of statistical indices including R2, RRSE, RMSE, and MAE values for 6 most appropriate GEP models

  
 

 

Table 5. Summaries of statistical indices including R2, RRSE, RMSE, and MAE values for 6 most appropriate GEP models. 
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3. 6. Tree structure of GEP
The output of models made by GEP can be 

expressed using two different languages. Gene 
language and ET language. These languages allow 
the user to recognize the sequence of genes, which is 
referred to as the Karva symbol [24]. As an example 
in Figure 2 the tree structures for estimating the 
grain size is shown.

3. 7. Sensitivity analysis
One of the effective methods to determine the 

effect of each input parameter on the selected 
output is the use of sensitivity analysis. The 
purpose of the analysis was to reduce the number 
of input parameters so that they do not measure 

the performance of the model. Reducing input 
parameters leads to a reduction in unnecessary 
data collection, resulting in lower costs. A step-by-
step approach to the GEP trained was performed by 
changing each input parameter once at a constant 
rate to apply the sensitivity analysis. Different 
constant rates (5, 10) are selected in this article. For 
each input parameter, the percentage in the output 
was modified as the input parameter was changed. 
The sensitivity of each of the input parameters was 
calculated by the following equation (5) [25]:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑ |𝑡𝑡𝑖𝑖 − 𝑝𝑝𝑖𝑖|

𝑖𝑖

(%) = 1
𝑁𝑁 ∑ (%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑎𝑎 𝑖𝑖𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 )𝑗𝑗
𝑁𝑁
𝑗𝑗=1  (5)

Where Si is the sensitivity level (%).

Fig. 2- An example of tree structure in GEP.

Fig. 3- Example of time-dependent color changes of colloidal silver precursor 
after the addition of OS within the data collection prepared in sample 17.



186

Shafaei A, J Ultrafine Grained Nanostruct Mater, 54(2), 2021, 180-191

Fig. 4- (a) ESEM image (b) TEM image (c) EDS spectrum, (d) DLS of green synthesized AgNPs prepared in sample 17.

4. Results and discussion
By adding different concentrations of OS to the 

AgNO3 (mentioned in section 2.1), the reduction 
reaction was performed after 30 min in all samples, 
and over time, the color of the samples changed 
from colorless to dark brown (Figure 3). These 
color changes can be related to the excitation of 
surface plasmon vibrations in AgNPs due to AgNO3 
reduction to Ag0.

The morphological character of AgNPs 
synthesized using OS was showed by the ESEM 
image. Figure 4 (a) shows that they had spherical 
shapes. Figure 4 (c) shows the presence of silver in 
the synthesized composition, which confirms the 

synthesis of AgNPs, and its maximum absorption 
is about 3 keV. From EDS spectra, it is clear that 
the AgNPs were reduced by OS. The analysis also 
confirmed the presence of O, C, and N, elements 
which are the main constituents of OS that 
adsorbed to the surface of nanoparticles. The TEM 
micrograph of AgNPs is shown in Figure 4 (b), 
which demonstrates spherical shape agglomerated 
clusters and narrow particle size distribution. 
DLS analysis in Figure 4 (d) showed that the size 
distribution of AgNPs synthesized based on the 
concentration of 1 mM silver nitrate solution was 
between 5 to 68 nm. 

As an example, Figure 5 confirms the evolution 

Fig. 6- 



187

Shafaei A, J Ultrafine Grained Nanostruct Mater, 54(2), 2021, 180-191

Fig. 5- XRD spectra of AgNPs using OS prepared prepared in sample 17.

Fig. 6- 

of peaks at 2θ = 38.13 °, 44.31 °, 64.56 °, 77.51 °, 
and 81.62 °, corresponding to the crystalline plates 
(111), (200), (220), (311) and (222) of Ag phase 
with FCC structure, respectively, in accordance 
with Ag (Code number 00-004-0783). The average 
size of AgNPs was estimated by the Scherrer 
equation to be about 33 nm (sample 17 in Table 
1). It should be noted that all the size of AgNPs is 
shown schematically in Figure 6.

In this study, the GEP model contains three 
genic chromosomes linked to each other by the 
addition (+) function. The expression tree of each 

gene (sub- ETs) is shown in Figure 2, that the 
general relationships between them are extracted 
as an equation given in Table 4.

Figure 7 shows a good agreement between the 
experimental results and the values predicted by 
the GEP model. It can be inferred that the proposed 
model was able to model the relationship between 
the selected operational parameters with the low-
error output and relatively high correlation in 
the training phase (Figure 7a). Similar behavior 
was repeated in the testing step (Figure 7 (b)). 
Therefore, it can be concluded that the model could 

Fig. 6- Changes of the average particle size of Ag prepared prepared using OS as a reducing agent calculated by Scherer equation.

Fig. 7- Comparison of experimental data obtained from the model in two steps (a) training and (b) testing based on GEP-I.
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effectively predict the size of nanoparticles in both 
stages. The R2, MAE, RRSE, and RMSE values are 
shown in Table 5 for the training and testing data.

Figure 8 compared the accuracy of the most 
appropriate 6 GEP with each other. As shown 
by consideration of various statistical indices, 
the best GEP was changed. In this regard for the 
RRSE, RMSE, R2, and MAE values respectively 
proposed the GEP (6 Train & 1 Test) and GEP 
(1 Train & 1 Test) as the most appropriate GEP 
model. Accordingly, consideration of errors or R2 
individually cannot be utilized as a criterion for 
selecting the best-proposed model.

 In order to solve this issue, the fitness value (Eq. 
6) is defined, which is a combined form of errors 
and R2 as the threshold. 

Fitness value = RMSE + RRSE + MAE + 1/(R)2          (6)

As shown, lower fitness values indicate better 
fitness. Figure 9 compared the fitness value of 
various investigated GEP.

Figures 10 (a-j) shows a three-dimensional 
diagram based on the interaction of experimental 
parameters on nanoparticle size using the 
regression equation. It should be noted that the 

Fig. 9- The changes in fitness values as a function of generation number for various GEP models.

Fig. 8- Comparison of validation GEP models criteria (a) R2, (b) RMSE, (c) RRSE, (d) MAE for GEP-I structure.
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effect of two parameters in reducing the size of 
AgNPs in aqueous zones has been shown and 
explained based on it. The interaction of the 
parameters, AgNO3 with OS, and the amount of 
Fr cannot be independently explained because, as 

shown in Figure 10 (a), the minimum parameters 
are required for the minimum size. If this ratio 
is high or low, it means an increase in one of the 
parameters. The role of silver nitrate is to supply 
reduces silver (Ag+) ions. The role of the extract is to 

Fig. 10- An example of 3-dimensional changes of operational variables by AgNPs size; (a) of AgNO3/OS versus feeding rate, (b) AgNO3/
OS versus pH, (c) AgNO3/OS versus T, (d) AgNO3/OS versus AS, (e) pH versus feeding rate, (f) T versus feeding rate, (g) AS versus 
feeding rate, (h) T versus pH, (i) AS versus pH, (j) AS versus T.
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accelerate the reduction of these ions to the metallic 
silver (Ag0); hence, a balance must be struck, and 
this balance is not possible except by optimizing 
both parameters. In all reactions, the total reaction 
time is 30 min, and the concentration of silver 
nitrate is 1 mM. Therefore, if the amount of feeding 
time increases, more value from Ag+ is converted 
to Ag0. However, the role of these parameters 
must be optimized, taking into account the other 
parameters, and cannot be judged independently.

As shown in Figures 10 (b, e, h, i), increasing the 
pH of the solution leads to the formation of small 
nanoparticles. These results are consistent with the 
previous studies on the inverse relationship between 
AgNPs and pH. On the other hand, increasing 
the pH of the solution leads to the formation of 
spherical nanoparticles. In general, the pH of the 
solution affects the chemistry of the nanoparticles 
and balances the nucleation and growth process in 
them. Stimulation rate plays an important role in 
the size of nanoparticles and the placement of silver 
ions in the presence of reducing agents (Figures 10 
(c, f, h, j)).

Experimental results showed that a high 
excitation rate, with an increase in the reaction level, 
leads to a more homogeneous environment and 
smaller nanoparticles. On the other hand, particle 
size reduction and narrow size distribution with 
increasing T are known phenomena. The reason is 
to control the reaction kinetics. The reaction rate is 
slow at low T, while at higher T, particle formation 
and growth are complete, and the consumption of 
silver ions increases. But it should be noted that 
with increasing the pH of the solution, the T is low. 
The reason is the change in the chemical nature of 
the reaction with the increase of this parameter, 
and if the T is high, the particle size occurs due to 
the binding and accumulation of particles. 

By consideration of green synthesis as an 
extensive approach for the preparation of AgNPs, 

the general trend including the positive or negative 
effect of each experimental parameter on the size 
of AgNPs was investigated, separately [26-33]. The 
results mentioned above are in good agreement 
with previous studies on the effectiveness of these 
parameters and their role on the size of AgNPs. 
Generally, the prediction of AgNPs the effect of five 
variables, including AgNO3/OS, AS, Fr, pH, and T, 
were studied. 

By using sensitivity analysis, the effect of 
experimental parameters on the size of AgNPs was 
considered by OS (Figure 11). Accordingly, the 
most important parameters in the size of AgNPs 
were Fr, AgNO3 to OS ratio, and AS. It should be 
noted that the effect of the parameters should be 
considered together, and this does not mean that 
the effect of T and pH are negligible.

5. Conclusions
Today, the use of AgNPs is increasing, especially 

in medical applications. It may because of its small 
size, leading to an increase in the effective level and 
greater effectiveness due to the relationship between 
size and morphology. This study is the first study 
that used GEP to model the size of AgNPs prepared 
by green synthesis that uses OS as a reducing agent. 
Six user-friendly GEP models are constructed for 
the estimation of the size of AgNPs as a function of 
AgNO3/OS ratio, as a reducing agent, AS, Fr, pH, 
and T. By random distribution, 25% of selected 
data set employed for testing, and remained 75% 
were used in training steps. In order to obtain 
the best GEP model with minimum error and 
maximum R2, a series of analyses were performed 
using the fitness value procedure, and finally, 
GEP-I with 0.828 R2, 0.44 RRSE, 5.894 RMSE, and 
4 was proposed as appropriate GEP model. It has 
3 genes, 8 heads, and 30 chromosomes, which can 
be the very best training algorithm and presents a 
worthy performance for GEP modeling of the size 

Fig. 11- Effect of input variables in the size of AgNPs.
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of AgNPs. According to the results of this research, 
it could be suggested that genetic programming 
models can be used for the size prediction of 
AgNPs. The results of sensitivity analysis reveal 
that the AgNO3-to-OS ratio and feeding rate are 
the most effective parameters, and the pH of the 
reaction is the least effective parameter on AgNPs 
size. 
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