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Hydroxyapatite (HA) is one of the most common biocompatible ceramic with wide usages in various aspects 
of medicine due to the resemblance to the mineral bone tissue. The particle size of HA has a key roll in 
determination of the reaction rate at the interface of natural bones/artificial. Accordingly, this paper tries 
to propose a novel approach for the preparation of HA nanoparticles from natural source as raw materials 
using microwave irradiation without any further heat treatment. To compare the proposed approach 
various combination of micro irradiation and heat treatment as traditional and more recent developments 
were performed. Characterizations of products were carried out using XRD, SEM and TEM techniques. The 
results confirmed the presence of minor constituents (Mg, Sr, C, O) and the ratio of Ca/Mg=1.63 in the 
products. Moreover, the formation of relatively spherical shape like nanoparticles of hydroxyapatite (about 
30 nm) was confirmed by TEM images during the direct preparation of HA nanoparticles by employment 
of microwave irradiation. According to the results, the proposed approach provide the possibility of the 
preparation of large-scale, spherical and pure HA nanoparticles in acceptable time by usage of low cost 
natural source, eco-friendly method without the using of organic solvent and expensive raw materials.

1. Introduction
Hydroxyapatite (HA) is one of the most 

common bio-ceramic with wide applications in 
biomedical usages. There are various preparation 
routes in the literatures for the preparation of HA 
as precipitation approach [1], ultrasonic irradiation 
[2], sol-gel [3], electrodeposition [4], hydrothermal 
process [5] and spray pyrolysis [6]. Some of 
researches were carried out based on the using of 
natural sources, e.g., sea corals [7], egg shells [8], 
bovine bone [9], planet sources [10], fish bones and 
fish scales [11] as raw materials. The outstanding 
advantages of mammalian bones as raw materials 
are low cost, high purity and the presence of minor 

affecting elements such as Mg, Zr and Sr [9]. 
Todays, the advancement of microwave 

(MW) irradiation is a hot issue for preparation 
of biomaterials. In MW irradiation, internally 
generated heat of molecules is replaced by the 
external heating source and consequently more 
attractive due to the rapid heating, shorter process 
times, higher efficiently for every transformation 
as well as throughout volume heating. MW 
irradiation of eggshell to prepare the precursors in 
sol-gel technique [12, 13] and activation of aqueous 
solution for precipitation of Ca and P components 
using a domestics MW [14] were the typically 
usages of MW for HA preparation. Side by side 
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comparison of various techniques for preparation 
of HA are summerized in Table 1. Accordingly, 

the possibility of HA nanoparticles preparation by 
combination of MW irradiation and heat treatment 

Table 1- Side by side com
parison of various techniques for preparation of H

A

 
2 

Table 1(a): Side by side com
parison of various techniques for preparation of H

A. 

N
o 

M
ethod 

M
ain idea 

Source 
H

A
 G

rain 
size 

Secondary 
phases 

M
orphology 

of products 
Ref. 

1 
H

eat treatm
ent and 

chem
ical exchange 
reaction 

Studding of the effect of excess diam
m

onium
 

phosphate on the form
ation of H

A
 

Corals 
_ 

β - 
Ca

3 (PO
4 )2  

H
exagonal 

1996 
[16] 

2 
H

eat treatm
ent 

Proposing of possible route for producing of 
novel porous ceram

ics 
Fish bone 

200-500nm
 

Ca
3 (PO

4 )2  
Spherical 

 
2002 
[17] 

3 
H

eat treatm
ent and ball 

m
illing 

Em
ploym

ent of Eggshells as raw
 m

aterials by 
addition of P precursor 

Eggshells 
- 

β - 
Ca

3 (PO
4 )2  

CaO
 

G
rape-type 
granular 

2003 
[18] 

4 
H

ydrotherm
al and 

m
icrow

ave irradiation 

Com
parative crystallographic analysis of H

A
 

derived from
 the chem

ical route, coral and 
xenogeneic bone 

Coral 
 

- 
- 

H
exagonal 

2004 
[19] 

5 
Chem

ical process and heat 
treatm

ent 

Com
parative crystallographic analysis of H

A
 

derived from
 the chem

ical route, coral and 
xenogeneic bone 

Bovine bone 
- 

- 
H

exagonal 
2004 
[19] 

6 
H

ydrotherm
al and 

solvotherm
al 

Em
ploym

ent of Coral shells as raw
 m

aterials 
Coral shells 

- 
(Ca,Sr,Pb,Z

n)CO
3 , 

Ca
3 (PO

4 )2  

Porous 
structure 

2005 
[20] 

7 
M

icrow
ave processing 

U
sing of m

icrow
ave For activation of 

eggshells as precursor 
Eggshells 

18nm
 

CaO
 

Spherulite 
2007 
[21] 

8 
V

ibrio-m
illing 

Em
ploym

ent of vibro-m
illing m

ethod 
Bovine bone 

58-62nm
 

– 
N

eedle like 
2008 
[22] 

9 
Burning of bones and heat 

treatm
ent 

H
eat treatm

ent in tw
o stages; Preparation of 

H
A

 betw
een at 950°C 

Bovine bone 
1-30μm

 
– 

Irregular 
shape w

ith 
w

ide size of 
distribution 

2009 
[23] 

10 

Therm
al decom

position, 
subcritical w

ater and 
alkaline hydrotherm

al 
processes 

Production of sm
all nanorod 

Bovine bone 
300nm

 
– 

N
anorod 

2009 
[24] 

11 
Subcritical w

ater and 
alkaline hydrotherm

al 
processes 

Production of sm
all nanoflakes 

Bovine bone 
>300nm

 
- 

N
anoflakes 

2009 
[24] 

12 
A

lkaline hydrotherm
al 

processes 
U

sing of N
aO

H
 as dopant 

Bovine bone 
>300nm

 
- 

N
anoflakes 

2009 
[24] 
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Table 1- Continued

 
3 

13 
B

urning of bones; m
illing 

and heat treatm
ent 

Preparation of stable H
A

 betw
een 800 and 

1100°C
 

B
ovine bone 

133nm
 

– 
Irregular 
spheres 

2009 
[25] 

14 
Sol–gel m

ethod 
U

sing of sm
all quantities of biom

olecules as 
additive to induce novel properties 

E
ggshells 

50nm
 

- 
R

ectangular 
2009 
[26] 

15 
Sol–gel m

ethod 
D

ecreasing of calcination tem
perature to 

700°C
 respect to the literature 

E
ggshells 

35-50nm
 

- 
Prolate 

spheroidal 
2009 
[27] 

16 
H

ydrotherm
al on the 

saturated vapor pressure 
curve 

A
nalyses of crystallographic relationships 

during the hydrotherm
al conversion of a 

calcitic sea urchin spine into apatite 

Sea urchin 
spines 

- 
- 

R
od like 

2010 
[28] 

17 
B

urning of bones and heat 
treatm

ent 

E
valuation of the effects of tem

perature on the 
m

icrostructure of the calcined sam
ples 

regarding porosity and pore size distribution. 

H
um

an, 
bovine and 

porcine 
44-105nm

 
- 

Porous 
structure 

2010 
[29] 

18 
Solvotherm

al m
ethod 

Investigation of practical param
eters on the 

adsorption of Pb 
E

ggshells 
- 

- 
- 

2010 
[30] 

19 
H

eat treatm
ent of activated 

precursor after ball m
illing 

Preparation technique 
O

yster shells 
- 

β - 
C

a
3 (PO

4 )2  
R

od like 
2011 
[31] 

20 
A

utoclaves and 
hydrotherm

al 
H

igher m
etabolically activity of low

-
crystalline apatite structures 

E
ggshells and 

fruits 
12-49nm

 
- 

N
eedle and 
rod like 

2011  
[32] 

21 
T

ransferred arc plasm
a 

(T
A

P) 
Investigation of the effect of processing tim

e 
on the preparation of organic free H

A
 

B
ovine bone 

– 
C

a
3 (PO

4 )2 ; 
C

aO
 

– 
2011 
[33] 

22 
H

eat treatm
ent 

Preparation of H
A

 containing silver 
nanoparticles 

B
ovine bone 

8-20nm
 

- 
Spherical and 

H
exagonal 

2011 
[34] 

23 
H

eat treatm
ent 

E
m

ploym
ent of fish bones as raw

 m
aterials 

T
una and 

Sw
ord bones 

50-83nm
 

β - 
C

a
3 (PO

4 )2  
R

od like 
2011 
[35] 

24 
B

urning of bones and heat 
treatm

ent 
E

ffects of calcination tim
e and tem

perature 
B

ovine bone 
– 

C
a

3 (PO
4 )2  

and β - 
C

a
3 (PO

4 )2  

H
exagonal 

 
2012 
[36] 

25 
Precipitation m

ethod 
E

m
ploym

ent of eggshells as precursor in 
precipitation m

ethod 
E

ggshells 
- 

- 
- 

2012 
[37] 

26 
M

icrow
ave; sol–gel 

E
m

ploym
ent of m

icrow
ave for activation of 

precursor 
E

ggshells 
78nm

 
β - 

C
a

3 (PO
4 )2  

Flow
er like 

2012 
[38] 

27 
H

ydrotherm
al 

Synthesis of H
A

 by a sim
ple hydrotherm

al 
m

ethod 
E

ggshells 
0.06 μm

 
C

aH
PO

4  
W

hiskers 
2012 
[39] 

28 
Solvotherm

al m
ethod 

Preparation of flow
er like at 120°C

 in 
appropriate tim

e 
E

ggshells 
35-15 μm

 
- 

Flow
er like 

2012 
[40] 

29 
Precipitation technique 

Investigation of pH
 and tem

perature in 
particle size of H

A
 

E
ggshells 

35nm
 

C
a

3 (PO
4 )2 ,

C
a

9 (M
g,Fe

2

+)(PO
4 )6 (P

O
3 O

H
) 

Like globules 
2013 
[41] 
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Table 1- Continued

 
4 

30 
H

eat treatm
ent 

T
reating the bones in solution before the 

annealing 
C

od fish bones 
300-500nm

 
β - 

C
a

3 (PO
4 )2  

N
eedle 
like 

2013 
[42] 

31 
C

om
bination of therm

al 
m

echonochem
ical m

ethod 

Investigation of the effects of m
illing and 

com
position of raw

 m
aterials on 

m
echanochem

ical synthesis of H
A

 
B

ovine bone 
116nm

 
– 

Spheroidal 
and 

polygonal 

2013 
[43] 

32 
H

eat treatm
ent 

Prediction of H
A

 m
orphology by X

R
D

 
B

ovine bone 
29.5-79.1nm

 
- 

Equiaxial 
w

ith uniform
 

porosity 

2013 
[44] 

33 
H

eat treatm
ent 

Prediction of H
A

 m
orphology by X

R
D

 
B

ovine bone 
73.1nm

 
- 

H
exagonal 

2013 
[44] 

34 
Pyrolysis–w

et slurry 
precipitation process 

Synthesis m
ethod 

M
ussel shells 

- 
- 

- 
2013 
[45] 

35 
Self-assisted chem

ical 
reaction m

ethod 
A

nalysis of the effect of soaked in K
2 H

PO
4  

solution for different days 
Eggshells 

41nm
 

- 
C

ircular 
2013 
[46] 

36 
Solid state reaction 

U
sing of C

aH
PO

4  2H
2 O

 and C
a

2 P
2 O

7  as 
precursors 

Eggshells 
- 

β -
C

a
3 (PO

4 )2  
Spheroidal 

2013 
[47] 

37 
H

eat treatm
ent 

C
om

parison of synthetic and biological 
H

ydroxyapatite 
B

ovine bone 
- 

- 
Porous and 

Interconnecte
d 

2013 
[48] 

37 
A

lkaline treatm
ent 

U
sing of  N

aO
H

 as dopant 
B

ovine bone 
- 

- 
Som

e pores 
but is still 

dense 

2013 
[48] 

37 
D

efat (T
reatm

ent to 
rem

ove fat) 
U

sing of   Petroleum
 ether 

acetone as dopant 
B

ovine bone 
- 

- 
D

ense 
surface 

2013 
[48] 

38  
H

eat treatm
ent 

In vitro bioactivity and in vitro degradation 
behaviors 

of the com
posites prepared by H

A
 

B
ovine bone 

20nm
 

- 
Spherical 

2014 
[49] 

39 

Pyrolysis process follow
ed 

by a chem
ical synthesis 

step at am
bient pressure 

and tem
perature of 100°C

 

under alkaline condition 

Production of H
A

 w
ith porous structure 

Shells 
- 

C
aC

O
3 

C
a

3 (PO
4 )2  

Porous and 
interconnecte

d structure 

2015 
[50] 

40 
H

eat treatm
ent 

Studding the m
echanism

 of H
A

 nucleation 
C

attle bone 
37.15nm

 
 

- 
N

eedle shape 
2015 
[51] 

41 
Precipitation m

ethod and 
m

icrow
ave activation 

Production of nanocom
posite film

s by green 
synthesis 

Eggshells 
4 -14 nm

 
_ 

N
eedle-like 

2015 
[52] 
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Table 1- Continued

 
5 

42 
Chem

icals and m
icrowave 

irradiation 
U

sing ethylenediam
inetetra acetic acid as 

chelating agent through m
icrow

ave irradiation 
M

ussel shell 

Length 100–
200 nm

 and 
w

idth 2–5 
nm

 

- 
Flower-like 

2016 
[53] 

43 
H

eat treatm
ent 

U
sing of fish bone as raw

 m
aterials 

Fish bone 
64-330nm

 
_ 

_ 
2016 
[54] 

44 
A

lkaline treatm
ent 

Preparation of H
A

 from
 fish scale wastes for 

selenium
 adsorption 

Tilapia nilotica 
scales 

10-25nm
 

- 
H

exagonal 
2017 
[55] 

45 
Enzym

atic hydrolysis 
Extraction of H

A
 from

 fish scale using 
enzym

atic hydrolysis 
O

reochrom
is 

sp. scales 
719.8nm

 
- 

Irregular 
spherical 

2017 
[56] 

46 
A

lkaline hydrolysis 
Em

ploym
ent of Thunnus obesus bone as raw

 
m

aterial 
Thunnus 

obesus bone 

Length 17–
71 nm

 and 
w

idth 
5–10 nm

 

- 
Rod like 

2017 
[57] 

47 
H

eat treatm
ent 

Characterization of optical properties of 
natural H

A
, investigation of calcination tim

e 
and m

illing tim
e 

Pseudoplatysto
m

a corruscans, 
Paulicea 
lutkeni, 

Pseudoplatysto
m

a fasciatum
 

bones 

300nm
 

- 
- 

2017 
[58] 

48 
H

eat treatm
ent 

Investigation of the kinetics and m
echanism

 of 
transform

ation 

Sepia 
officinalis 

bones 
200-300nm

 
CaH

PO
. 

2H
2 O

 
Rod 

2017 
[59] 
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of naturally source, especially dog bones with nearly 
the same of human bones biological behavior [15], 
hasn’t investigated, yet. The present study proposed 
a new method on the base of MW irradiation and 
heat treatment of dog bones as raw materials for the 
preparation of HA nanoparticles.

2. Experimental details
Dog bones were collected and removed all 

skeletal flesh from there’s. Clean bones dropped 
at boiled water for 60 min and dried for 24 h at 
room temperature. The dried bones were manually 
scraped and sieved to prepare a mesh size lower 
than 4 mm and hold to -19 °C for 30 min. 

Bones particles divided to 5 samples, each 
sample experiences various heating treatment 
and MW irradiation as shown in Table 2. MW 
Irradiation was done in silicon carbide vessel. 
Phase characterizations of products carried out 
by Philips PW- 1730 X-ray diffraction (XRD) 
using Cu Kα radiation. The average crystallite 
size was estimated using Scherrer’s equation [60-
62]. The morphology, point chemical analysis 
and size distribution of samples investigated by 
SEM (JEOLJSM 5310), dispersive energy X-Ray 
spectroscopy (EDX) (Oxford Instrument) and 
TEM (CM200 Philips), respectively. To draw the 
histogram of size distribution, the average size of 
85 particles in TEM images were measured using 
the microstructure measurement program.

3. Results and discussion 
3.1. Changes in samples colors 

As shown in Fig. 1, the color of raw bone (S1 
sample) is pale yellow. After the heating of S2 
sample at 600 °C for 150 min, its color changes 
to black. While, the same heating process after 10 
min MW irradiation causes to the change in color 
to white (S3 sample). Moreover, MW irradiation 
for 30 min without any further heating is able to 
create similar color change in S5 sample. Also, 

by increasing the temperature from 600 °C (in 
S3 sample) to 900 °C (in S4 sample) the color of 
sample remained relatively constant. 

Generally, the mammalian bones consist of 
hydroxyapatite and carbon constituents distributed 
in the amorphous organized collagen fibers 
matrix. Removal of organic constituents, phase 
transformation of bones, changing the amount 
and degree of crystallity during the heat treatment 
and MW irradiation were the main reasons of the 
samples color changes in Fig. 1. Since, the raw 
samples holds in -19 °C before irradiation, it can 
be concluded that the thermal shock of initially 
samples induced the micro cracks/flaws in the 
structure and enhanced the internal surface of 
samples during the irradiation. In this case, the 
surface of flaws acts as suitable situation for the 
exitance of burning products and the evolution of 
crystalline HA.

It was necessary to note that, the main difference 
between MW energy and other forms of radiation, 
e.g., X and gamma rays, are the MW energy is 
non-ionizing and therefore does not change the 
molecular structure of the compounds during the 
heating [63]. Accordingly, MW irradiation provides 
only thermal activation. Due to the low dielectric 
constant of raw dog bones [64], it has low potential 
for the coupling with microwaves. According to 
the results, irradiation of dog bone in the substrate 
with little dielectric constant has not any effect 
on the evolution of HA. While, doing the same 
experiment on silicon carbide solid cup provide the 
required energy for the evolution of HA at 30 min 
irradiation time. As a consequence, the time and 
intensity of MW during the irradiation of raw dog 
bone directly enhanced the amount of prepared 
heat energy as well as the maximum of operational 
temperature. In this condition, the crystallity and 
grain size of HA must be enhanced, directly. 

3.2. XRD phase identification 
Bone composed from amorphous organized 

Table 2- Various conditions for the preparation of samples

 6 

 

Table 2: Various conditions for the preparation of samples. 
 
 

Sample MW activation Time of MW 
(min) 

Calcination temperature 
(°C) 

Calcination Time 
(min) 

S1 ✗ ✗ ✗ ✗ 
S2 ✗ ✗ 600 150 
S3 ✓ 10 600 150 
S4 ✓ 10 900 150 
S5 ✓ 30 ✗ ✗ 

 
 

https://en.wikipedia.org/wiki/Hydroxylapatite
https://en.wikipedia.org/wiki/Carbon
https://www.google.com/search?q=crystallity&nfpr=1&sa=X&ved=0ahUKEwj4ldaF2cTdAhVS4YUKHY_KARoQvgUIKCgB
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 1 

 
Fig. 1: The changes of dog bone colors during the heat treatment and MW irradiation for S1: Raw bone; S2: Raw 
bone after heating at 600 °C for 150 min; S3: Sample after 10 min MW irradiation and then heating at 600 °C for 

150 min; S4: Sample after 10 min MW irradiation and then heating at 900 °C for 150 min; S5:  Sample after 30 min 
MW irradiation. 

 
 
 
 
 
 
 
 
 
 
 
 

 2 

 

 
Fig. 2: XRD spectra of dog bones after various heating treatment and MW irradiation for S1: Raw bone; S2: Raw 
bone after heating at 600 °C for 150 min; S3: Sample after 10 min MW irradiation and then heating at 600 °C for 
150 min; S4: Sample after 10 min MW irradiation and then heating at 900 °C for 150 min; S5:  Sample after 30 min 
MW irradiation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1- The changes of dog bone colors during the heat treatment and MW irradiation for S1: Raw bone; S2: Raw bone after heating 
at 600 °C for 150 min; S3: Sample after 10 min MW irradiation and then heating at 600 °C for 150 min; S4: Sample after 10 min MW 
irradiation and then heating at 900 °C for 150 min; S5:  Sample after 30 min MW irradiation.

Fig. 2- XRD spectra of dog bones after various heating treatment and MW irradiation for S1: Raw bone; S2: Raw bone after heating 
at 600 °C for 150 min; S3: Sample after 10 min MW irradiation and then heating at 600 °C for 150 min; S4: Sample after 10 min MW 
irradiation and then heating at 900 °C for 150 min; S5:  Sample after 30 min MW irradiation.
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collagen fibers as a matrix, embedded with HA 
nanocrystals [65]. The XRD patterns of various 
samples (Fig. 2) confirmed the presence of HA 
(JCPDS cod nom: 01-072-1243). As shown all peaks 
are broader compared to the standard, especially 
in S1 and S2 samples, confirmed the presence of 
amorphous and crystalline combination phases 
of organized collagen and HA, respectively. All 
samples have sharp peaks of (002) diffractions 
due to the induction of the co-alignment between 
the c-axis of the HA crystals and the long axis of 
the matrix collagen [66]. Other peaks are merged 
at (300), (112) and (211) planes especially in 
S1 sample. Also, the number and intensity of 
characteristics peaks of S3, S4 and S5 samples are 
increased, respect to S1 and S2 samples. It is related 
to the formation and increasing the crystallinity of 
HA phase after MW irradiation and heat treatment. 
Similar to the changes in colors in Fig. 1; S3, S4 and 
S5 samples experience the same phases evolution. 
Consequently, MW irradiation of raw bone for 
30 min in S5 sample is able to produce crystalline 
phase of HA, successfully.

Table 3 abbreviates the unit cell parameters of S3 
and S4 samples. As shown the unit cell dimension 
are relatively constant at 600 °C and 900 °C after 
150 min, and confirm the stable nature of HA 

nanoparticles. 
Using Scherres equation, the average crystallite 

sizes of products are measured to be about 29±1 
nm, 45±1 nm and 67±1 nm for S3, S4 and S5 
samples, respectively. Thus, increasing the heating 
temperatures from 600 °C to 900 °C, improved 
the enlargement of grain boundaries and as a 
consequence, crystallite size enhanced by heating 
temperature. From macroscopic view, reducing 
of total surface energy is the driving force for the 
coarsening and microscopically, decreasing in 
surface energy with various curvatures was strongly 
improved mass transport in higher temperature 
[67]. Moreover, MW irradiation for higher time 
(30 min in sample S5) enable us to produce HA 
nanocrystalline similar to S3 and S4 samples. It 
was necessary to note that, the energy of MW in S5 
sample is higher then the S3 and S4 samples, due 
to the higher crystallite size of S5 sample. Because 
of the lower crystallite size of HA within the 
crystalline samples and the novelty of preparation 
method, S3 and S5 samples were selected for 
further microstructure investigation by SEM and 
TEM techniques.

Fig. 3 represents the SEM images and typical 
point chemical analysis (EDX spectra) of S3 sample 
prepared at 600 °C. Accordingly, the product 

 3 

 
Fig. 3: SEM images of S3: Sample after 10 min MW irradiation and then heating at 600 °C for 150 min and S5: 

Sample after 30 min MW irradiation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3- SEM images of S3: Sample after 10 min MW irradiation and then heating at 600 °C for 150 min and S5: Sample after 30 min 
MW irradiation.

Table 3- Unit cell parameters of HA powder for S3 and S4 samples

 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Unit cell parameters of HA powder for S3 and S4 samples. 
 

Sample Unit cell parameter (Å) Cell volume (Å3) 
A C 

S3 9.3 6.8 522.2 
S4 9.3 6.8 522.8 
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particles have generally rounded morphology 
with the strong tendency for sever agglomeration 
to compensate the surface effects. EDS spectra 
confirms the presence of minor affecting elements 
(e.g., Mg, O, Sr and C) in the products as well 
as the ratio of Ca/P= 1.63. This ratio is close to 
the stoichiometric ratio of Ca/P in HA (about 
1.67). Since, Mg and Sr are categorized in vital 
constituents for tissue metabolic activities, their 
presence are so beneficially from biological aspects. 
By decreasing the ratio of Ca/P in HA, calcium 
deficient hydroxyapatite (CDHA) is produced. 
CDHA transforms to β-tricalcium phosphate (β 
-TCP) beyond 600 °C [68-70]. Since, there is not 
any peak/s that confirmed the formation of β 
-TCP up to 900 °C (in S4 sample), the precursor 
doesn’t belong to CDHA family. As shown in Fig. 
3 (S5 sample), the tendency for agglomeration was 
severer than the S3 sample. This can be related to 

the higher shape irregularity and size distribution 
of particles in S5 sample. This evident confirmed 
by TEM observations in Fig. 4. It was necessary 
to note that the EDX spectra and point chemical 
analysis of S5 is similar to S3 sample.

Fig. 4 shows the TEM images and their size 
distribution histogram of HA prepared at 600 °C for 
150 min after 10 min MW irradiation (S3 sample) 
and HA prepared after 30 min MW irradiation (S5 
sample). Similar to the XRD results, the average 
size of particles is to be about 30 nm (S3 sample in 
Fig. 4). While, the size distribution of S5 sample is 
higher and equal to be about 55 nm. Also, due to 
the severity of MW irradiation the average particles 
size of HA in S5 is higher than S3.

Since, the thermal activation is the main effect 
of MW during the irradiation, it can be concluded 
that by enhancement of the intensity and duration 
of MW irradiation from 10 min (S3 samples) to 

 4 

 

 
Fig. 4: TEM images of S3: Sample after 10 min MW irradiation and then heating at 600 °C for 150 min and S5: 

Sample after 30 min MW irradiation. 
 
 

Fig. 4- TEM images of S3: Sample after 10 min MW irradiation and then heating at 600 °C for 150 min and S5: Sample after 30 min 
MW irradiation.
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30 min (in S5 sample), the required energy for the 
burning of organic compound of raw bone, i.e., 
carbon constituent, amorphous organized collagen 
fibers matrix and the evolution of HA nanoparticles 
have been provided. 

From morphological aspects, in the case of 30 
min MW irradiation, the HA particles has more 
tendency for growth and preparation of spherical 
morphology with narrower distribution size. It was 
necessary to note that the coarsening tendency of 
grains that accelerates at high temperatures can 
be explained by Ostwald ripening and Oriented 
attachment mechanisms [71-72]. The former is 
administrated for more soluble materials and 
the dissolution of the smaller ones caused to the 
growth of the larger particles/crystals. While, the 
later is administrated for less soluble crystals and 
merging of the smaller ones each other caused to 
the coarsening of particles. More stability of larger 
particles/crystals than the smaller ones is the 
driving force of Ostwald ripening and is a function 
of temperature due to its effect on the interfacial 
energy, growth rate coefficients, and solubility. 
While, the decreasing of interphase boundary as well 
as the surface energy of the system are the driving 
force of Oriented attachment. Both mechanisms 
dependent to the amount of diffusion dictated by 
“kT” value and enhanced at higher temperatures. 
Since, the composition of HA is consistent in our 
experiments the Oriented attachment mechanism 
was more effective.

4. Conclusion
In this study, HA nanoparticles were successfully 

prepared by combination of MW irradiation 
and heat treatment of dog bones as precursor. 
The same nano-HA with higher particles size 
is produced after 30 min of MW irradiation in 
comparison of the sample prepared after 10 min 
MW irradiation and then heating at 600 °C for 150 
min. It can be concluded that, by optimization of 
practical parameter of MW in the future, it will 
possible to prepare the nano-HA from dog bone 
with the highest similarity to the human bones 
from biological aspects. Since, the proposed 
method doesn’t require to the high extensive 
purity precursor, complicated equipment as well 
as acceptable biocompatibility with the human 
bones, is superior to the other existed procedures 
for preparation of HA nanoparticles. 
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