1. López-Muñoz MJ, van Grieken R, Aguado J, Marugán J. Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catalysis Today. 15;101(3):307-14.
2. Di Paola A, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008:317(1):366-76.
3. Ghorbanpour M, Lotfiman S. Solid-state immobilisation of titanium dioxide nanoparticles onto nanoclay. Micro & Nano Letters. 2016; 11(11):684-7.
4. Ghorbanpour M, Falamaki C. Micro energy dispersive x-ray fluorescence as a powerful complementary technique for the analysis of bimetallic Au/Ag/glass nanolayer composites used in surface plasmon resonance sensors. Applied optics. 2012;51(32):7733-8.
5. Wang YM, Liu SW, Xiu Z, Jiao XB, Cui XP, Pan J. Preparation and photocatalytic properties of silica gel-supported TiO2. Materials Letters. 2006;60(7):974-8.
6. Pucher P, Benmami M, Azouani R, Krammer G, Chhor K, Bocquet JF, Kanaev AV. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Applied Catalysis A: General. 2007;332(2):297-303.
7. Ren S, Zhao X, Zhao L, Yuan M, Yu Y, Guo Y, Wang Z. Preparation of porous TiO2/silica composites without any surfactants. Journal of Solid State Chemistry. 2009;182(2):312-6.
8. Pouraboulghasem H, Ghorbanpour M, Shayegh R, Lotfiman S. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites. Journal of Central South University. 2016;23(4):787-92.
9. Lotfiman S, Ghorbanpour M. Antimicrobial activity of ZnO/silica gel nanocomposites prepared by a simple and fast solid-state method. Surface and Coatings Technology. 2017;310:129-33.
10. Pourabolghasem H, Ghorbanpour M, Shayegh R. Antibacterial Activity of Copper-doped Montmorillonite Nanocomposites Prepared by Alkaline Ion Exchange Method. Journal of Physical Science. 2016;27(2):1-12.
11. Ghorbanpour, M, Moghimi, M and Lotfiman, S. Silica-Supported Copper Oxide Nanoleaf with Antimicrobial Activity Against Escherichia Coli. Journal of Water and Environmental Nanotechnology. 2017;2(2): 112-117.
12. Periyat P, Baiju KV, Mukundan P, Pillai PK, Warrier KG. High temperature stable mesoporous anatase TiO2 photocatalyst achieved by silica addition. Applied Catalysis A: General. 2008;349(1):13-9.
13. Hadjltaief HB, Zina MB, Galvez ME, Da Costa P. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry. 2016;315:25-33.
14. Ding Z, Hu X, Lu GQ, Yue PL, Greenfield PF. Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir. 2000;16(15):6216-22.
15. Roy B, Ahrenkiel SP, Fuierer PA. Controlling the size and morphology of TiO2 powder by molten and solid salt synthesis. Journal of the American Ceramic Society. 2008;91(8):2455-63.
16. Reddy MV, Jose R, Teng TH, Chowdari BV, Ramakrishna S. Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles. Electrochimica Acta. 2010;55(9):3109-17.
17. Chen Y, Wang K, Lou L. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry. 2004;163(1):281-7.
18. Van Grieken R, Aguado J, Lopez-Munoz MJ, Marugán J. Synthesis of size-controlled silica-supported TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry. 2002;148(1):315-22.
19. Marugán J, Hufschmidt D, Sagawe G, Selzer V, Bahnemann D. Optical density and photonic efficiency of silica-supported TiO2 photocatalysts. Water research. 2006;40(4):833-9.
20. Payami R, Ghorbanpour M, Jadid AP. Antibacterial silver-doped bioactive silica gel production using molten salt method. Journal of Nanostructure in Chemistry. 2016;6(3): 215-221.
21. Ghorbanpour M, Falamaki C. A novel method for the fabrication of ATPES silanized SPR sensor chips: Exclusion of Cr or Ti intermediate layers and optimization of optical/adherence properties. Applied Surface Science. 2014;301: 544-50.
22. Ghorbanpour, M and Falamaki, C. A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment. Journal of Nanostructure in Chemistry. 2013;3(1), 1-7 .
23. Ghorbanpour, M. Fabrication of a New Amine Functionalised Bi-layered Gold/Silver SPR Sensor Chip. Journal of Physical Science. 2015;26(2): 1–10.