[1]. Agnew, S., Plastic anisotropy of magnesium alloy AZ31B sheet, in: Magnesium Technology, TMS 2002, pp. 169-174.
[2]. Del Valle, J., Ruano, O., Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy, Materials Science and Engineering: A, Vol. 487 (2008) pp. 473-480.
[3]. Kim, H. K., The grain size dependence of flow stress in an ECAPed AZ31 Mg alloy with a constant texture, Materials Science and Engineering: A, Vol. 515 (2009) pp. 66-70.
[4]. Zhu, Y. T., Lowe, T. C., Observations and issues on mechanisms of grain refinement during ECAP process, Materials Science and Engineering: A, Vol. 291 (2000) pp. 46-53.
[5]. Figueiredo, R., Cetlin, P., Langdon, T., The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Materialia, Vol. 55 (2007) pp. 4769-4779.
[6]. Figueiredo, R. B., Langdon, T. G., Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, Journal of materials science, Vol. 45 (2010) pp. 4827-4836.
[7]. Lin, H., Huang, J., Langdon, T., Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP, Materials Science and Engineering: A, Vol. 402 (2005) pp. 250-257.
[8]. Biswas, S., Suwas, S., Evolution of sub-micron grain size and weak texture in magnesium alloy Mg–3Al–0.4 Mn by a modified multi-axial forging process, Scripta Materialia, Vol. 66 (2012) pp. 89-92.
[9]. Del Valle, J., Pérez-Prado, M., Ruano, O., Accumulative roll bonding of a Mg-based AZ61 alloy, Materials Science and Engineering: A, Vol. 410 (2005) pp. 353-357.
[10]. Xu, C., Xia, K., Langdon, T. G., Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure, Materials Science and Engineering: A, Vol. 527 (2009) pp. 205-211.
[11]. Mabuchi, M., Iwasaki, H., Yanase, K., Higashi, K., Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE, Scripta materialia, Vol. 36 (1997) pp. 681-686.
[12]. Matsubara, K., Miyahara, Y., Horita, Z., Langdon, T., Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP, Acta materialia, Vol. 51 (2003) pp. 3073-3084.
[13]. Lapovok, R., Thomson, P., Cottam, R., Estrin, Y., The effect of grain refinement by warm equal channel angular extrusion on room temperature twinning in magnesium alloy ZK60, Journal of Materials Science, Vol. 40 (2005) pp. 1699-1708.
[14]. Furui, M., Kitamura, H., Anada, H., Langdon, T. G., Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP, Acta Materialia, Vol. 55 (2007) pp. 1083-1091.
[15]. Figueiredo, R. B., Langdon, T. G., Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing, Journal of materials science, Vol. 44 (2009) pp. 4758-4762.
[16]. Lapovok, R., Estrin, Y., Popov, M. V., Langdon, T. G., Enhanced Superplasticity in a Magnesium Alloy Processed by Equal‐Channel Angular Pressing with a Back‐Pressure, Advanced Engineering Materials, Vol. 10 (2008) pp. 429-433.
[17]. Ding, S., Chang, C., Kao, P., Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion, Metallurgical and Materials Transactions A, Vol. 40 (2009) pp. 415-425.
[18]. Ding, R., Chung, C., Chiu, Y., Lyon, P., Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy, Materials Science and Engineering: A, Vol. 527 (2010) pp. 3777-3784.
[19]. Kim, W., Yoo, S., Chen, Z., Jeong, H., Grain size and texture control of Mg-3Al-1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes, Scripta materialia, Vol. 60 (2009) pp. 897-900.
[20]. Zhilyaev, A. P., Langdon, T. G., Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, Vol. 53 (2008) pp. 893-979.
[21]. Pérez-Prado, M., Ruano, O., Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding, Scripta Materialia, Vol. 51 (2004) pp. 1093-1097.
[22]. Xing, J., Soda, H., Yang, X., Miura, H., Sakai, T., Ultra-fine grain development in an AZ31 magnesium alloy during multi-directional forging under decreasing temperature conditions, Materials transactions, Vol. 46 (2005) pp. 1646-1650.
[23]. Miura, H., Yu, G., Yang, X., Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties, Materials Science and Engineering: A, Vol. 528 (2011) pp. 6981-6992.
[24]. Miura, H., Maruoka, T., Yang, X., Jonas, J., Microstructure and mechanical properties of multi-directionally forged Mg–Al–Zn alloy, Scripta Materialia, Vol. 66 (2012) pp. 49-51.
[25]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Paul, H., Characterization of ultrafine and nano grained magnesium alloy processed by severe plastic deformation, Materials Characterization, Vol. 87 (2014) pp. 27-35.
[26]. Yamashita, A., Horita, Z., Langdon, T., Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Materials Science and Engineering A, Vol. 300 (2001) pp. 142-147.
[27]. Horita, Z., Matsubara, K., Makii, K., Langdon, T. G., A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys, Scripta Materialia, Vol. 47 (2002) pp. 255-260.
[28]. Figueiredo, R. B., Langdon, T. G., Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, Materials Science and Engineering: A, Vol. 501 (2009) pp. 105-114.
[29]. Kim, W., Park, J., Wang, J., Yoon, W., Realization of low-temperature superplasticity in Mg–Al–Zn alloy sheets processed by differential speed rolling, Scripta materialia, Vol. 57 (2007) pp. 755-758.
[30]. Máthis, K., Gubicza, J., Nam, N., Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing, Journal of Alloys and Compounds, Vol. 394 (2005) pp. 194-199.
[31]. Kim, W., Hong, S., Kim, Y., Min, S., Jeong, H., Lee, J., Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, Vol. 51 (2003) pp. 3293-3307.
[32]. Guo, Q., Yan, H., Chen, Z., Zhang, H., Grain refinement in as-cast AZ80 Mg alloy under large strain deformation, Materials Characterization, Vol. 58 (2007) pp. 162-167.
[33]. Zhao, Z., Chen, Q., Hu, C., Shu, D., Microstructure and mechanical properties of SPD-processed an as-cast AZ91D + Y magnesium alloy by equal channel angular extrusion and multi-axial forging, Materials & Design, Vol. 30 (2009) pp. 4557-4561.
[34]. Jin, L., Lin, D., Mao, D., Zeng, X., Chen, B., Ding, W., Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion, Materials Science and Engineering: A, Vol. 423 (2006) pp. 247-252.
[35]. Serre, P., Figueiredo, R. B., Gao, N., Langdon, T. G., Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion, Materials Science and Engineering: A, Vol. 528 (2011) pp. 3601-3608.
[36]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Beladi, H., Dynamic recrystallization in AZ31 magnesium alloy, Materials Science and Engineering: A, Vol. 456 (2007) pp. 52-57.
[37]. Berbon, P. B., Langdon, T. G., Tsenev, N. K., Valiev, R. Z., Furukawa, M., Horita, Z., Nemoto, M., Fabrication of bulk ultrafine-grained materials through intense plastic straining, Metallurgical and Materials Transactions A, Vol. 29 (1998) pp. 2237-2243.
[38]. Xu, C., Horita, Z., Langdon, T. G., The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta materialia, Vol. 56 (2008) pp. 5168-5176.
[39]. Xu, C., Horita, Z., Langdon, T. G., The evolution of homogeneity in processing by high-pressure torsion, Acta materialia, Vol. 55 (2007) pp. 203-212.
[40]. Fukuda, Y., Oh-Ishi, K., Horita, Z., Langdon, T., Processing of a low-carbon steel by equal-channel angular pressing, Acta Materialia, Vol. 50 (2002) pp. 1359-1368.
[41] Kang, F., Wang, J. T., Peng, Y., Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy, Materials Science and Engineering: A, Vol. 487 (2008) pp. 68-73.
[42]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Processing of AZ31 magnesium alloy by a new noble severe plastic deformation method, Materials Science and Engineering: A, Vol. 528 (2011) pp. 1334-1339.
[43]. Langdon, T. G., The principles of grain refinement in equal-channel angular pressing, Materials Science and Engineering: A, Vol. 462 (2007) pp. 3-11.
[44]. Kuhlmann-Wilsdorf, D., High-strain dislocation patterning, texture formation and shear banding of wavy glide materials in the LEDS theory, Scripta materialia, Vol. 36 (1997) pp.173-181.
[45]. Kawasaki, M., Horita, Z., Langdon, T. G., Microstructural evolution in high purity aluminum processed by ECAP, Materials Science and Engineering: A, Vol. 524 (2009) pp. 143-150.
[46]. Kim, H., Kim, W., Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation, Materials Science and Engineering A, Vol. 385 (2004) pp. 300-308.
[47]. Xia, K., Wang, J., Wu, X., Chen, G., Gurvan, M., Equal channel angular pressing of magnesium alloy AZ31, Materials Science and Engineering: A, Vol. 410 (2005) pp. 324-327.
[48]. kaibyshev, R., Sitdikov, O., On bulging mechanism of dynamic recrystallisation in: Third International Conference on Recrystallization and Relate Phenomena, 1996.
[49]. Galiyev, A., Kaibyshev, R., Gottstein, G., Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta materialia, Vol. 49 (2001) pp. 1199-1207.
[50]. Kaibyshev, R., Galiev, A., Sitdikov, O., On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys, Nanostructured Materials, Vol. 6 (1995) pp. 621-624.
[51]. Furukawa, M., Utsunomiya, A., Matsubara, K., Horita, Z., Langdon, T., Influence of magnesium on grain refinement and ductility in a dilute Al-Sc alloy, Acta materialia, Vol. 49 (2001) pp. 3829-3838.
[52]. Sun, D., Chang, C., Kao, P., Microstructural Aspects of Grain Boundary Bulge in a Dynamically Recrystallized Mg-Al-Zn Alloy, Metallurgical and Materials Transactions A, Vol. 41 (2010) pp. 1864-1870.
[53]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Cabrera, J., Calvillo, P., EBSD characterization of repetitive grain refinement in AZ31 magnesium alloy, Materials Chemistry and Physics, Vol. 149 (2015) pp. 339-343.
[54]. Wu, P., Chang, C., Kao, P., The distribution of dislocation walls in the early processing stage of equal channel angular extrusion, Materials Science and Engineering: A, Vol. 374 (2004) pp. 196-203.
[55]. Segal, V., Deformation mode and plastic flow in ultra fine grained metals, Materials Science and Engineering: A, Vol. 406 (2005) pp. 205-216.
[56]. Huang, X., Suzuki, K., Watazu, A., Shigematsu, I., Saito, N., Microstructural and textural evolution of AZ31 magnesium alloy during differential speed rolling, Journal of Alloys and Compounds, Vol. 479 (2009) pp. 726-731.
[57]. Klimanek, P., Pötzsch, A., Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates, Materials Science and Engineering A, Vol. 324 (2002) pp. 145-150.
[58]. Lapovok, R., Tóth, L., Molinari, A., Estrin, Y., Strain localisation patterns under equal-channel angular pressing, Journal of the Mechanics and Physics of Solids, Vol. 57 (2009) pp. 122-136.
[59]. Quadir, M., Ferry, M., Al-Buhamad, O., Munroe, P., Shear banding and recrystallization texture development in a multilayered Al alloy sheet produced by accumulative roll bonding, Acta Materialia, Vol. 57 (2009) pp. 29-40.
[60]. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Naderi, M., Roostaei, A. A., Deformation homogeneity in accumulative back extrusion processing of AZ31 magnesium alloy, Journal of Alloys and Compounds, Vol. 507 (2010) pp. 207-214.
[61]. Murr, L., Trillo, E., Pappu, S., Kennedy, C., Adiabatic shear bands and examples of their role in severe plastic deformation, Journal of materials science, Vol. 37 (2002) pp. 3337-3360.
[62]. Su, C., Lu, L., Lai, M., A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies, Materials Science and Engineering: A, Vol. 434 (2006) pp. 227-236.
[63]. Barnett, M., Keshavarz, Z., Beer, A., Ma, X., Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy, Acta materialia, Vol. 56 (2008) pp. 5-15.
[64]. Sakai, T., Miura, H., Mechanical Properties of Fine-Grained Magnesium Alloys Processed by Severe Plastic Forging, Intechopen.
[65]. Eskandari, M., Ductility Improvement in AZ31 Magnesium Alloy Using Constrained Compression Testing Technique”, Materials Science and Engineering A, Vol. 576 (2013) pp. 74–81.
[66]. Kim, W., An, C., Kim, Y., Hong, S., Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing, Scripta materialia, Vol. 47 (2002) pp. 39-44.
[67]. Li, J., Xu, W., Wu, X., Ding, H., Xia, K., Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature, Materials Science and Engineering: A, Vol. 528 (2011) pp. 5993-5998.
[68]. Janeček, M., Yi, S., Král, R., Vrátná, J., Kainer, K., Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP, Journal of materials science, Vol. 45 (2010) pp. 4665-4671.
[69]. Yoshida, Y., Cisar, L., Kamado, S., Kojima, Y., Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy, Materials transactions, Vol. 44 (2003) pp. 468-475.