[1].1. Mikhaylova, M., et al., Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir, 2004. 20(6): p. 2472-2477.
[2].2. Suto, M., et al., Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 2009. 321(10): p. 1493-1496.
[3].3. Wan, J., et al., Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chemical Communications, 2007(47): p. 5004-5006.
[4].4. Jain, P.K., et al., Surface plasmon resonance enhanced magneto-optics (SuPREMO):
Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano letters, 2009. 9(4): p. 1644-1650.
[5].5. Ji, X., et al., Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. The Journal of Physical Chemistry C, 2007. 111(17): p. 6245-6251.
[6].6. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 2008: Wiley-Vch.
[7].7. Saha, K., et al., Gold nanoparticles in chemical and biological sensing. Chemical reviews, 2012. 112(5): p. 2739-2779.
[8].8. Huang, X., et al., Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in medical science, 2008. 23(3): p. 217-228.
[9].9. Valenzuela, R., et al., Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. Journal of Alloys and Compounds, 2009. 488(1): p. 227-231.
[10]. 10. Hee Kim, E., et al., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2005. 289(0): p. 328-330.
[11]. 11. Cai, W. and J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. Journal of Colloid and Interface Science, 2007. 305(2): p. 366-370.
[12]. 12. Cao, S.-W., Y.-J. Zhu, and J. Chang, Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol–water system. New Journal of Chemistry, 2008. 32(9): p. 1526-1530.
[13]. 13. Drake, N.L. and T.B. Smith, THE DECOMPOSITION OF ETHYLENE GLYCOL IN THE PRESENCE OF CATALYSTS. I. VANADIUM PENTOXIDE AS CATALYST. Journal of the American Chemical Society, 1930. 52(11): p. 4558-4566.
[14]. 14. Ding, T., et al., Sonochemical synthesis and characterizations of monodispersed PbSe nanocrystals in polymer solvent. journal of crystal growth, 2002. 235(1): p. 517-522.
[15]. 15. Dobryszycki, J. and S. Biallozor, On some organic inhibitors of zinc corrosion in alkaline media. Corrosion science, 2001. 43(7): p. 1309-1319.
[16]. 16. Bognitzki, M., et al., Polymer, metal, and hybrid nano‐and mesotubes by coating degradable polymer template fibers (TUFT process). Advanced Materials, 2000. 12(9): p. 637-640.
[17]. 17. Deng, H., et al., Monodisperse Magnetic Single‐Crystal Ferrite Microspheres.
Angewandte Chemie, 2005. 117(18): p. 2842-2845.
[18]. 18. Kim, K., et al., Silanization of Ag-Deposited Magnetite Particles: An Efficient Route to Fabricate Magnetic Nanoparticle-Based Raman Barcode Materials. ACS Applied Materials & Interfaces, 2010. 2(7): p. 1872-1878.