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ABSTRACT

Cu—Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial
especially for their high strength, high electrical as well as acceptable thermal conductivities and melting
points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical
alloying method as a cheap and mass production technique to prepare the non-equilibrium materials
such as solid solution structures. In this study, artificial neural networks (ANNs) program was developed to
establish the relationship between the practical parameters of mechanical alloying, i.e., weight percentages
of Cr and Zr as alloying element, milling times, milling speed, sintering time and temperature, on the micro
hardness of prepared Cu-Cr-Zr nanostructure alloys. The results of sensitivity analysis showed that the
alloying elements and sintering temperature had the highest and lowest effect on the micro hardness of
products, respectively. Also, the optimum milling speed and sintering temperature proposed as 255-291
rpm and 530-590°C, respectively. The established models of ANN introduced to genetic algorithm (GA) for
determination of the optimal condition. The results were evaluated using the confirmation experiments.
Moreover, the optimal condition of nanostructures alloy preparation with the highest micro hardness had

been proposed as 310 Hv with the root mean square error (RMSE) of lower than 3.4%.

Keywords: Artificial neural network; Genetic algorithm,; Cu-Cr-Zr nanocomposite; Micro hardness optimization.

1. Introduction

The characteristics of copper alloy, especially
electrical conductivity, converted these alloys as a
strategic material in electrical and heat exchanges
usages. Relatively, low strength of Cu alloys is
one of the most drawbacks for expanding of
their application. Solid solution strengthening
is one of the most common mechanisms for
expanding of the alloy strength. Due to the
deterioration effect of large amount of the addition
of secondary strengthening element on electrical
properties; the amount of alloying element must
be optimized to satisfy the electrical properties

[1, 2]. Consequently, the maximum strength is
restricted using the conventional solid solution
strengthening elements. To solve this issue, doping
of alloying elements e.g., Zr and Cr with very low
solubility, enable us to increase the strength as well
as electrical properties in acceptable level. These
elements are able to create the significant distortion
in very low concentrations [3-5].

Cu-Cr-Zr alloys are generally strengthened
using strain hardening as well as precipitation of
Cr and Cu-Zr complex phases [6-8]. The possibility
of Cu-Zr alloys strengthening using severe plastic
deformation is confirmed and optimized in the
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literatures[2,6,9-11]. Mechanicalalloyingisanother
method for the preparations of non-equilibrium
phases synthesized includes supersaturated solid
solution, metastable crystalline or amorphous
alloys, nanostructures and quasi-crystalline phases.
Accordingly, the Cu-Cr-Zr alloys prepared through
the solid state milling of pure alloying elements,
successfully.

Application of optimization strategies on the
base of ANN and GA is popular in engineering
process, due their unique characteristics for
consideration the non-liner relationship between
the affecting parameters [12]. ANN technique is
able to learn from practical data by determination
of weight and estimate the optimum condition,
alone. While, GA is a population based evolutionary
search as well as optimization process [13, 14].
The usual methodology for combination of this
abilities is using of output of ANN as input in GA
[13, 15]. This study tried to employ the ANN-GA
combination to estimate the optimum condition
for maximization of micro hardness of Cu-Cr-Zr
alloys. The optimum proposed parameters by GA-
ANN is evaluated using the practical experiments.

2. Experimental

The Cu-Cr-Zr alloys were prepared by
mechanical alloying of pure elemental powders.
The characteristic of the powders are: Cu (Merck,
99.9%, 100 um), Cr (Merck, 99.8%, 44 um) and Zr
(Merck, 99.8%, 50 um). The powder mixtures were
milled in a planetary ball mill with high chromium
stainless steel vial and ball to powder weight
ratio (BPR) equal 10:1. To avoid the oxidation of
samples, the milling was carried out under the Ar
atmosphere. To prevent from temperature raising
during the milling operations, 15 min rest was

used for every 30 min milling. Crystallinity and
phase characterization were determined using
XRD. Scanning electron microscopy (SEM) and
micro hardness analysis utilized to investigate
the morphology and mechanical properties of
products. It was necessary to note, by increasing the
number of practical parameters in ANN approach,
determination of the effect of each parameter was
so complicated. To avoid from the complexity
of determination the effect of each practical
parameters on the micro hardness of products, the
effect of other affected parameters (e.g., ligands,
stabilizers, volume of cup, atmosphere of furnaces,
the size of balls) [16] were ignored and all of them
adjusted to a constant value in this study.

Table 1 abbreviates the details of practical
parameters as well as the average of micro hardness
for every experiment.

Typically, Fig. 1 shows the SEM image and XRD
pattern of sample 71. As shown, the prepared Cu-
Cr-Zr alloy has flake structure with the average
particles size in about 5-80 nm. It was necessary
to note that the formation of Cu-Cr-Zr alloy in all
sample confirmed by XRD pattern.

2.1 Artificial Neural Network Modeling

ANN methodologies are advanced by brain
structure and consist of various parts, i.e., the
inputs, outputs, weight vector, activation and
transfer functions. These parts situated in three
layers, which are input, hidden and output layers.
Input layer get input parameters. Hidden layers
are responsible for the processing of input layer.
The result of hidden layer reported in output layer
as output vector, the other constituent of ANN is
neuron, i.e., considered as interconnected non-
linear memory with less processing elements.

[®
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Fig. 1- Typically, (a) SEM image and (b) XRD pattern of Cu-Cr-Zr alloys sample 71 in table 1.
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Table 1- Experimental results with inputs and output parameters

No Matri  Reinforcement Bpr Millin Vial Sintering Sintering Micro Hardness
X Cr Wt.% 7r g Speed  Temperatur Time (Hv)
Wt.% Time (Rpm) e (°C) (Min)
(H)
1 Cu 0 1 10 20 300 450 30 170
2 Cu 0 1 10 96 300 450 30 200
3 Cu 0 1 10 20 300 600 30 160
4 Cu 0 1 10 40 300 600 30 165
5 Cu 0 1 10 20 300 750 30 100
6 Cu 0 1 10 40 300 750 30 120
7 Cu 0 1 10 96 300 750 30 116
8 Cu 0 1 10 40 300 450 30 175
9 Cu 0 1 10 96 300 600 30 200
10 Cu 0 3 10 20 300 450 30 220
11 Cu 0 3 10 96 300 450 30 280
12 Cu 0 3 10 20 300 600 30 230
13 Cu 0 3 10 40 300 600 30 228
14 Cu 0 3 10 96 300 600 30 228
15 Cu 0 3 10 20 300 750 30 160
16 Cu 0 3 10 40 300 750 30 183
17 Cu 0 3 10 40 300 450 30 232
18 Cu 0 6 10 40 300 450 30 257
19 Cu 0 6 10 20 300 600 30 260
20 Cu 0 6 10 96 300 600 30 190
21 Cu 0 6 10 20 300 750 30 238
22 Cu 0 6 10 40 300 750 30 276
23 Cu 0 6 10 20 300 450 30 260
24 Cu 0 6 10 40 300 600 30 280
25 Cu 1 0 10 12 250 447 30 149
26 Cu 1 0 10 12 250 599 30 106
27 Cu 1 0 10 12 250 753 30 31
28 Cu 1 0 10 48 250 451 30 199
29 Cu 1 0 10 48 250 601 30 200
30 Cu 1 0 10 48 250 751 30 155
31 Cu 1 0 10 96 250 452 30 215
32 Cu 1 0 10 96 250 602 30 222
33 Cu 1 0 10 96 250 751 30 169
34 Cu 3 0 10 12 250 450 30 151
35 Cu 3 0 10 12 250 599 30 127
36 Cu 3 0 10 12 250 750 30 45
37 Cu 3 0 10 48 250 452 30 206
38 Cu 3 0 10 48 250 601 30 243
39 Cu 3 0 10 48 250 750 30 186
40 Cu 3 0 10 96 250 452 30 220
41 Cu 3 0 10 96 250 601 30 242
42 Cu 3 0 10 96 250 752 30 191
43 Cu 6 0 10 12 250 452 30 166
44 Cu 6 0 10 12 250 602 30 134
45 Cu 6 0 10 12 250 751 30 64
46 Cu 6 0 10 48 250 452 30 208
47 Cu 6 0 10 48 250 604 30 189
48 Cu 6 0 10 48 250 751 30 176
49 Cu 6 0 10 96 250 454 30 238
50 Cu 6 0 10 96 250 602 30 189
51 Cu 6 0 10 96 250 756 30 184
52 Cu 0.5 0.5 10 12 300 450 30 111
53 Cu 0.5 0.5 10 48 300 450 30 217
54 Cu 0.5 0.5 10 96 300 450 30 222
55 Cu 0.5 0.5 10 12 300 600 30 100
56 Cu 0.5 0.5 10 48 300 600 30 243
57 Cu 0.5 0.5 10 96 300 600 30 261
58 Cu 0.5 0.5 10 12 300 750 30 97
59 Cu 0.5 0.5 10 48 300 750 30 223
60 Cu 0.5 0.5 10 96 300 750 30 170
61 Cu 1.5 1.5 10 12 300 450 30 134
62 Cu 1.5 1.5 10 48 300 450 30 270
63 Cu 1.5 1.5 10 96 300 450 30 262
64 Cu 1.5 1.5 10 12 300 600 30 114
65 Cu 1.5 1.5 10 48 300 600 30 247
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Table 1- Continued

66 Cu 1.5 1.5 10 96
67 Cu 1.5 1.5 10 12
68 Cu 1.5 1.5 10 48
69 Cu 1.5 1.5 10 96
70 Cu 3 3 10 12
71 Cu 3 3 10 48
72 Cu 3 3 10 96
73 Cu 3 3 10 12
74 Cu 3 3 10 48
75 Cu 3 3 10 96
76 Cu 3 3 10 12
71 Cu 3 3 10 48
78 Cu 3 3 10 96

300 600 30 271
300 750 30 111
300 750 30 262
300 750 30 222
300 450 30 171
300 450 30 309
300 450 30 241
300 600 30 160
300 600 30 247
300 600 30 248
300 750 30 158
300 750 30 220
300 750 30 250

Connection of neurons to each other is carried out
by weights. These weight help to the network to
solve the problem. A connected neuron formula is
reported as eq. 1:

P
n:Zwin +b

i=1

(eq. 1)

In which, b is the bias of neurons, p is the number
of elements and w, is the weight of the input vector
a. Each neuron receives sum of the weight inputs
with bias and used from activation function to
validate its output signal, as eq. 2:

P
f(n)=a< w;n +b)
2

In which, a is the transfer function of the neuron.
Some of the most common transfer functions are
log-sigmoid (Logsig: eq. 3); tan-sigmoid (Tansig:
eq. 4) and linear transfer function (Purelin: eq. 5).

(eq.2)

1
a(m = 1+ exp(—n) (eq.3)
1
a(n) = 1+ exp(—2n) -1 (eq‘ 4)
a(n) =n (eq. 5)
a a
+1 +1

a = logsig(n) a = tansig(n)

Log-Sigmoid Transfer Function

1 2
a=

a=

l+e™

Tan-Sigmoid Transfer Function

l+e72

Fig. 2 schematically shows these transfer
function. Feed-forward backpropagaton is one
of the most common strategies for training of
the network in ANN. This approach enables us
to present effective solutions for engineering
applications, especially, in material science [17-19].

Detailed explanations of the functions of hidden
and output layers are descripted in [17, 20, 21]. As
shown in Table 2, by consideration of regression
as criteria, “Logsig” and “Purelin” are the best
functions for hidden and output layers, respectively.

In this study, feed-forward neural network
with back-propagation algorithm employ to
simulate the process. In feed-forward strategy,
the output of each neuron is merely related to the
next layers neurons. This strategy consists of one
or more hidden layers and has one output layers.
To increase the performance of evolution, all input
data normalized in the range 0 - 1. Hidden layers
by employment of non-linear transfer function
manage the network to learn the linear or non-
linear behavior among the input and outputs.
Normalizing is done using eq. 6. [21]:

X - Xmin

X, =08x
" - Xmin

+ 0.1 (eq. 6)

Xmax

Inwhich,X_ andX _arethehighestand lowest

a = purelinfn)

Linear Transfer Function

-1

Fig. 2- Schematically representation of transfer functions [16].
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values of the independent X variable, respectively.
The experimental data divided into two parts
randomly. In this work, the back-propagation
employed by a network that have an input layer
with their neurons for every practical factor (table
1) and an output layer include one neurons (micro
hardness); 65 patterns of the experimental results
were employed to train the ANN model, and the
remaining employed for testing. Linear regression
analysis is carried out to compute the correlation
coefficient (R?) between the experimental and
predicted values. Fig. 3 illustrates the comparison
between the experimental and predicted data.
Accordingly, correlation coeflicient for training and
testing stage are 0.9914 and 0.9834, respectively.
The results of neural network confirmed the
experimental data by high accuracy.

Various combinations are tested to select the
optimum condition. To validate each combination,
root mean square error (RMSE) is used as metric
and calculated form eq. 7. [21, 22]:

RMSE = 1 3 |Actul value — Predicted value| 100
- NZ Actul value x (eq 7)

The minimum of RMSE belongs to the network
with “Logsig” function for hidden layers, Purelin
function for output layer and the number of
neurons in hidden layer was (5-30-15-1). Fig. 4
schematically represents the proposed network
structure of this study. From table 2, the minimum
amount of error is equal to 3.4% and consequently
this structure selects for further optimization.

Back propagation is used for learning of network,
where comprises from two passes within various
layer of network as forward pass and backward
pass. In the former, the input vector is used to
the network and its effect extended through the
network layer by layer. In this stage, the synaptic
weights are supposed to be fixed. While, in the later,
the parameters of network are fixed and changed
to enhance its adaptability to the practical data.
Accordingly, the difference of network output and
desired value is estimated and the results used in
backward pass to update the synaptic weights.
The same trend is repeated until the accuracy of
prediction would be maximized [23, 24].

Table 2- Amount of regressions for different ANN structure

No. Activation Function Neurons In Hidden Layers Regression
Layer One Layer Two (R?»)
Layer One Layer Output Layer
Two
1 Tansig Tansig Tansig 10 3 0.9464
2 Tansig Logsig Purlin 1 14 0.4051
3 Logsig Logsig Tansig 5 5 0.5501
4 Logsig Logsig Logsig 7 12 0.7959
5 Tansig Tansig Purlin 20 4 0.9256
6 Logsig Tansig Logsig 3 7 0.8390
7 Logsig Tansig Purlin 9 15 0.8929
8 Tansig Logsig Tansig 30 27 0.9143
9 Tansig Tansig Logsig 16 5 0.7912
“10 Logsig Logsig Purlin 30 15 0.9914
*Best Ann Structure
110 110
b
S R?=0.9914 o | ®) 000

90
80 A
70 A
60
50
40
30
20 A
10

Predicted hardness (Hv)

10 20 30 40 50 60 70 80 920 100

Experimental hardness (Hv)

Predicted hardness (Hv)

R?*=0.9834 o

90
80
70
60
50
40
30 4
20
10

40 50 60 70 80 90 100
Experimental hardness (Hv)

30 110

Fig. 3- Regression analysis of predicted and experimental hardness for the best structure: (a) Training data; (b) Testing data.
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2.2 Genetic Algorithms (GA)

GA is one of the most common techniques in
artificial intelligence on the back of stochastic non-
linear optimization strategies without the necessity
of extra information, e.g, and gradient. For
optimization, GA must be including of selection,
crossover and mutation. The first is responsible
for the selection of excellent individuals from the
current data that they can propagate in the future.
The second arrange the parent individuals in pairs,
exchanging partial chromosomes among them with
a specific probability (i.e., crossover probability),
and embedded them to prepare the next generation
of new individuals possessing the specification of
parent individuals. The thirds is able to select the
individuals in the population and manipulate one
or a few genes of the selected individuals with the
mutation probability to save the generation more
diverse and favorable. This trend iterated till repeats

several iterations one chromosome has the best
fitness and, hence, the chromosome is considered
to be as the optimal solution [25-28].

3. Results and Discussion

As shown in Fig. 4, the best ANN structure
has 18 neurons in hidden layer with 3.4% error
among the 78 structures. Moreover, the predicted
and experimental data are close to the each other
and consequently confirmed the accuracy of
simulation. Sensitivity analysis is employed to
determine the most affecting parameters as well as
the degree of importance as output parameters. The
base of this analysis is the changing of output as a
function of changing in each practical parameter.
Moreover, the outputs of sensitivity analysis are
so helpful for decision about the “robustness” of
model parameters that guide the researches to a
better decision [29, 30]. RMSE values for different

Table 3- The assumptions made with regards to the simulations

Initial Step Size In Interval Location Step

Parameter To Avoid Small Reductions In Performance

Lower Limit On Change In Step Size
Upper Limit On Change In Step Size
Maximum Step Length

Minimum Step Length

Maximum Step Size

Training Epoch Number

Training Error Goal

Initial Step Size

Step Size Decrease Rate
Step Size Increase Rate

Default:0.01
Default: 0.1
Default: 0.1
Default: 0.5
Default: 100
Default: 1e-6
Default:26
150

Default: 0
Default: 0.01

Default: 0.9
Default: 1.1

Weight
percentage of
Cr

Weight
percentage of
Zr

Milling times |
Milling speed |

Input layer

Activation
function

Hidden layer

Output layer

Fig. 4- Schematically representation of feed-forward neural networks.
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ANN structures have been shown in Fig. 5.

In this analysis, a step-by-step method employed
on the optimum ANN sensitivity changing in
input parameter, one at a time, at a constant rate.
Various constant rates 5, 10, 15 and 20 are selected
for changing input parameter. eq. 8 estimates the
sensitivity of each parameter:

Z (% Change in output
Si =
N

X 100
% Change in input )

(eq.8)
In which, S, (%) is sensitivity level of each input
parameters and N is the total number of datasets,
ie., N=78.
Figure 6 represents the changes in hardness as

a function of every input variable. As shown, the
amounts of alloying elements (i.e., Cr and Zr)
with direct positive effects are the most effecting
parameters on the hardness of products. This can
be related to the induction of severe distortion in
Cu matrix during the solid solution preparation by
mechanical alloying. Milling time and vial speed
with dual effect situated at the later sequence on
the hardness of products. This can be related to
two opposite effects of these parameters during
of milling. From one hand, by increasing of these
parameter, the amount of transferred energy
to the powders enhanced dramatically and as a
consequence, preparation of finer grains with

30
/Q\
25 4 PR
’ Ay
g \
’ Ay
5 \
20 7 1
’ \
/ \
= O] N
£ 15 o L
= . o
-4 o

T

Relative sensitivity (Micro hardness percentge%)

-10 A

-13

-16 -

0.9464 0.4051 0.5501 0.7959 0.9256 0.839 0.8929 0.9143 0.7912 0.9914

Regression

Fig. 5- RMSE values for different ANN structures.
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temperature(°C)
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Fig. 6- The significance of input variables in micro hardness of Cu-Cr-Zr alloys.
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higher hardness is encouraged and from the other
hand, at higher milling times and vial speed, the
possibility of products crystallization is increased
due to the higher temperature increasing during
the milling, consequently decreased the hardness of
products. It was necessary to note that the sintering
temperature showed the lowest negative effect on
the hardness due the possibility of grain growth at
higher temperature. According to the sensitivity
analysis, the lowest effect of sintering temperature
is an evident that the presence of alloying elements
can be effectively decreased the possibility of grain
growth at higher temperatures.

According to Literatures, various nanostructur
materials are produced after initial crystallizaton
of totally or partially amorhous precursores by
controlling of the nucleation and growth process
during the heating [31, 32]. In many cases, slowly
diffiusing elements (e.g, substitual alloying element
of Zr and Cr in present study) are added to control
the graine growth and prepare finer distribution
of grain size [33]. In the presence of such large

substituational alloying elements, surface instability
as a consequence of lower grain size is not occored
during the crystallization and the concentration
profile of these element around the growing
crystallites affect both nucleation and growth of
neighber graines, i.e., impingement effect [34, 35].
The solubility of alloying element (especially Cr)
in Cu matrix is about zero and due to impingment
effect of such element during the sintering the
effect of temperature on the average particle size of
Cu-Cr-Zr is lower than the other parmeters.

In this study, GA with a single point crossover
and roulette wheel selection has been used. Every
individual is prepared using a fitness function (i.e.,
the output of ANN model). The initial population
is fixed to 650 generation size equal 100, crossover
probability is 0.9 and mutation = 0.1. Typically, the
optimum condition for preparation of Cu-Cr-Zr
alloys is proposed as the combination of weight
percentage of Cr and Zr as alloying element, milling
times, milling speed and sintering temperature to

Table 4- Proposed optimum condition by GA

Matrix Cu

Reinforcement Cr Wt.% 34-3.6
Zr Wt.% 1-1.5

Milling Time (h) 71-81

Burn-Rising Point (BRP) 10

Vial Speed (rpm) 255-291

Sintering Temperature (°C)  590-530

Sintering Time (min) 30

Micro hardness (HY)

Micro hardness

NS
2 S

pa P B2
sa 3Ry
8858 ¢

140

250

Fig. 7- (a) 3D profiles of micro hardness dependency of Cu-Cr-Zr alloys versus milling time and Cr (wt.%) at constant BPR=10:1;
RPM=255; Sintering time= 30min, Sintering temperature= 590°C and Zr (wt%)=1.5%. (b) 3D profiles of micro hardness dependency of

Cu-Cr-Zr alloys versus vial speed and milling time at constant Zr (wt%)=1.5%; Cr(wt%)=3(wt.%); Burning Through Point (BTP)= 10:1;
rpm: 300; Sintering time: 30 min and Sintering temperature= 590°C.
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enhance the micro hardness of proposed alloy to
310 micro vikers. To validate the simulation results,
various configurations are checked as shown in table
4. The results confirmed that the optimum fitness
function belong to trials number 71 and close to
the condition predicted by GA and as consequence
proved the validity of simulation results. According
to the sensitivity analysis, Cr (wt.%), milling time
and speed with positive effect are the most effective
parameters on micro hardness of products. This
can be related to the effect of these parameters for
decreasing of particle size as well as barrier effect
of alloying elements for dislocation movement.
As shown in Fig. 7, the micro hardness does not
continuously increase or decrease with any other
parameters. This trend is a consequence of mutually
effect of practical parameters on micro harness of
products, e.g., two opposite effects of milling time
and vial speed on micro hardness.

4. Conclusions

In this study combination of GA-ANN
employed to determine the optimum condition for
micro hardness maximization of Cu-Cr-Zr alloy
prepared by mechanical alloying. The results can
be categorized ad following:

ANN model with 30 and 15 neurons in hidden
layers 1 and 2, respectively is a useful method for
the prediction of hardness of Cu-Cr-Zr alloys
fabricated by mechanical alloying;

The combined GA-ANN algorithm is an
effective model for optimization of mechanical
alloying parameters, leading to the maximum
hardness in Cu-Cr-Zr alloys;

Sensitivity analysis shows that the alloying
elements (Cr, Zr), vial speed and milling time
are sintering temperature are the most important
parameters on the hardness of products.
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