Enhancing Conductivity in Nanocomposites: A Comprehensive Review of Silver Nanostructures and Reduced Graphene Oxide (rGO) Reinforcement Effects

Document Type : Review Paper

Authors

1 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.

2 University of Tehran

Abstract

Nowadays, conductive nanocomposites are widely utilized in many applications of electronic equipment, telecommunications, the internet of things (IOT), and biosensors. Enhancing electrical properties, transparency, mechanical strength, or surface adhesion in materials for printed circuits can drive advancements in related industries. To improve the conductivity, it’s significant to pay more attention to the types of electrical resistance (ER) in nanostructures such as tunneling resistance, contact resistance, and their mechanisms. Several review papers examine the synthesis processes of nanowires and how their diameter affects conductivity. Others concentrate on the mechanical properties and stability of reinforcement particles, along with efforts to synthesize rGOs and analyze their mechanical and electrical properties. However, none of these studies specifically address how morphology and synthesis impact conductivity in optoelectronic materials. This paper reviewed the various data obtained about the conductivity of single and multiple silver micro-flake, nanowires, nanoparticles, and rGO systems as 2D, 1D, and 0D nanostructures. To obtain the best conductivity by statistical methods, tried to find a mathematical relation between ER and structural parameters. Proportions of 20 wt.% for silver Micro-flakes, 20 wt.% for silver nanowires, and 5 wt.% for silver nanoparticles, respectively, may be suitable. Further, the most efficient result was obtained at the lowest aspect ratio for Ag-NWs. In general, it can be concluded that the higher the aspect ratio consequent the lower the ER. Also, probably, rGO especially without metal heteroatom can be a proper substitute for Ag micro-flakes.

Keywords


  1. Liu H, Deshmukh A, Salowitz N, Zhao J, Sobolev K. Resistivity signature of graphene-based fiber-reinforced composite subjected to mechanical loading. Frontiers in Materials. 2022; 25;9:818176.
  2. Iskandar F, Abdillah OB, Stavila E, Aimon AH. The influence of copper addition on the electrical conductivity and charge transfer resistance of reduced graphene oxide (rGO). New Journal of Chemistry. 2018; 42(19):16362-71.
  3. Hamedan, S. S., Abdi, M., & Sheibani, S. (2018). Comparative study on hot rolling of Cu-Cr and Cu-Cr-CNT nanocomposites. Transactions of Nonferrous Metals Society of China. 2018; 1;28(10):2044-2052.
  4. Shakibhamedan S, Sheibani S, Ataie A. High performance Cu matrix nanocomposite fabricated through spark plasma sintering of Cu and Cu-coated CNT. Metals and Materials International. 2021; 27:4271-85.
  5. Saleh A, Heshmati-Manesh S, Sheibani S, Ataie A. Consolidation of nano-crystalline copper powder by cold and hot pressing. Metals and Materials International. 2011; 17:749-53.
  6. Harris PJ. Carbon nanotube composites. International materials reviews. 2004; 1;49(1):31-43.
  7. Vargaftik NB. Handbook of thermal conductivity of liquids and gases. CRC press; 2020; 25.
  8. He W, Ye C. Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review. Journal of Materials Science & Technology. 2015; 1;31(6):581-8.
  9. Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H. Preparation of novel 3D graphene networks for supercapacitor applications. small. 2011; 18;7(22):3163-8.
  10. Ghorbani A, Sheibani S, Ataie A. Microstructure and mechanical properties of consolidated Cu-Cr-CNT nanocomposite prepared via powder metallurgy. Journal of Alloys and Compounds. 2018; 25;732:818-27.
  11. Bardeen J. Electrical conductivity of metals. Journal of Applied Physics. 1940; 1;11(2):88-111.
  12. Hagenmuller P, Van Gool W, editors. Solid electrolytes: general principles, characterization, materials, applications. Elsevier; 2013; 22.
  13. Jaramillo R, Ha SD, Silevitch DM, Ramanathan S. Origins of bad-metal conductivity and the insulator–metal transition in the rare-earth nickelates. Nature Physics. 2014; 10(4):304-7.
  14. Kawakami M, Goto KS, Matsuoka M. A solid electrolyte oxygen sensor for steelmaking slags of the basic oxygen converter. Metallurgical Transactions B. 1980; 11:463-9.
  15. Yousefi V, Mohebbi-Kalhori D, Samimi A. Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy. 2017; 19;42(3):1672-90.
  16. Abbas SF, Seo SJ, Park KT, Kim BS, Kim TS. Effect of grain size on the electrical conductivity of copper–iron alloys. Journal of Alloys and Compounds. 2017; 5;720:8-16.
  17. Watari K, Hirao K, Toriyama M, Ishizaki K. Effect of grain size on the thermal conductivity of Si3N4. Journal of the American Ceramic Society. 1999; 82(3):777-9.
  18. Yang X, Heidelbach F. Grain size effect on the electrical conductivity of clinopyroxene. contributions to mineralogy and Petrology. 2012; 163:939-47.
  19. He P, Cao J, Ding H, Liu C, Neilson J, Li Z, Kinloch IA, Derby B. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS applied materials & interfaces. 2019; 7;11(35):32225-34.
  20. Cheng Y, Zhang J, Fang C, Qiu W, Chen H, Liu H, Wei Y. Preparation of low volatile organic compounds silver paste containing ternary conductive fillers and optimization of their performances. Molecules. 2022; 19;27(22):8030.
  21. Liu H, Liu J, Wang S, Jin Z, Zhu S, Ma R, Zhang W, Wang J, Li J, Song C, Zhang S. Effects of silver nano-particles and nano-wires on properties of electrically conductive adhesives. Microelectronics Reliability. 2022; 1;135:114571.
  22. Peighambardoust SJ, Rikhtegar H, Mohammadzadeh Pakdel P, Mirmohseni A. Electrically conductive epoxy‐based nanocomposite adhesives loaded with silver‐coated copper and silver‐coated reduced graphene oxide nanoparticles. Polymers for Advanced Technologies. 2019; 30(8):1996-2004.
  23. Rubakov VA. Quantum mechanics in the tunneling universe. Physics Letters B. 1984; 29;148(4-5):280-6.
  24. Ji YH, Liu Y, Huang GW, Shen XJ, Xiao HM, Fu SY. Ternary Ag/epoxy adhesive with excellent overall performance. ACS applied materials & interfaces. 2015; 22;7(15):8041-52.
  25. Bellew AT, Manning HG, Gomes da Rocha C, Ferreira MS, Boland JJ. Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks. ACS nano. 2015; 24;9(11):11422-9.
  26. Yang Z, Qian H, Chen H, Anker JN. One-pot hydrothermal synthesis of silver nanowires via citrate reduction. Journal of colloid and interface science. 2010; 15;352(2):285-91.
  27. Zhang Y, Li G, Jin Y, Zhang Y, Zhang J, Zhang L. Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chemical Physics Letters. 2002; 365(3-4):300-4.
  28. Aksomaityte G, Poliakoff M, Lester E. The production and formulation of silver nanoparticles using continuous hydrothermal synthesis. Chemical engineering science. 2013; 14;85:2-10.
  29. Zou J, Xu Y, Hou B, Wu D, Sun Y. Controlled growth of silver nanoparticles in a hydrothermal process. China Particuology. 2007; 1;5(3):206-12.
  30. Adschiri T, Kanazawa K, Arai K. Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. Journal of the American Ceramic Society. 1992; 75(4):1019-22.
  31. Guex LG, Sacchi B, Peuvot KF, Andersson RL, Pourrahimi AM, Ström V, Farris S, Olsson RT. Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale. 2017; 9(27):9562-71.
  32. Chen J, Bi H, Sun S, Tang Y, Zhao W, Lin T, Wan D, Huang F, Zhou X, Xie X, Jiang M. Highly conductive and flexible paper of 1D silver-nanowire-doped graphene. ACS applied materials & interfaces. 2013; 27;5(4):1408-13.
  33. Bardeen J. Electrical conductivity of metals. Journal of Applied Physics. 1940; 1;11(2):88-111.
  34. Stauber T, Peres NM, Guinea F. Electronic transport in graphene: A semiclassical approach including midgap states. Physical Review B—Condensed Matter and Materials Physics. 2007; 15;76(20):205423.
  35. Berger HH. Contact resistance and contact resistivity. Journal of the Electrochemical Society. 1972; 1;119(4):507.
  36. Szkutnik PD, Roussel H, Lahootun V, Mescot X, Weiss F, Jiménez C. Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors. Journal of alloys and compounds. 2014; 5;603:268-73.
  37. Wu H, Hu L, Carney T, Ruan Z, Kong D, Yu Z, Yao Y, Cha JJ, Zhu J, Fan S, Cui Y. Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes. Journal of the American Chemical Society. 2011; 12;133(1):27-9.
  38. Malik MTU, Sarker A, Rahat SSM, Shuchi SB. Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review. Materials Today Communications. 2021; 1;28:102685.
  39. Bridgman PW. The resistance of nineteen metals to 30,000 kg/cm2. InPapers 94-121 1964; 31 (pp. 3203-3254). Harvard University Press.
  40. Hofman GL. Crystal structure stability and fission gas swelling in intermetallic uranium compounds. Journal of Nuclear Materials. 1986; 1;140(3):256-63.
  41. Haacke G. New figure of merit for transparent conductors. Journal of Applied physics. 1976; 1;47(9):4086-9.
  42. Alemour B, Yaacob MH, Lim HN, Hassan MR. Review of Electrical Properties of Graphene Conductive Composites. International Journal of Nanoelectronics & Materials. 2018; 1;11(4).
  43. Bøggild P, Mackenzie DM, Whelan PR, Petersen DH, Buron JD, Zurutuza A, Gallop J, Hao L, Jepsen PU. Mapping the electrical properties of large-area graphene. 2D Materials. 2017; 6;4(4):042003.
  44. Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes–A review. Journal of Materiomics. 2016; 1;2(1):37-54.
  45. Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nature chemistry. 2009; 1(5):403-8.
  46. Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013; 25;499(7459):419-25.
  47. Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano letters. 2008; 9;8(7):1965-70.
  48. Batista BL, Fuentes GT, Lobato AK, editors. The Role of Gasotransmitters in the Amelioration of Arsenic Toxicity in Plants: Biology and Biotechnology. Elsevier; 2023 ;27.
  49. Batool S, Idrees M, Han ST, Roy VA, Zhou Y. Electrical contacts with 2D materials: current developments and future prospects. Small. 2023; 19(12):2206550.
  50. Zeng XY, Zhang QK, Yu RM, Lu CZ. A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Advanced materials. 2010; 3;40(22):4484-8.
  51. Husnah M, Fakhri HA, Rohman F, Aimon AH, Iskandar F. A modified Marcano method for improving electrical properties of reduced graphene oxide (rGO). Materials Research Express. 2017; 5;4(6):064001.
  52. Zeng J, Bejtka K, Di Martino G, Sacco A, Castellino M, Re Fiorentin M, Risplendi F, Farkhondehfal MA, Hernández S, Cicero G, Pirri CF. Microwave‐Assisted Synthesis of Copper‐Based Electrocatalysts for Converting Carbon Dioxide to Tunable Syngas. ChemElectroChem. 2020; 2;7(1):229-38.
  53. Pytlakowska K, Kocot K, Pilch M, Zubko M. Ultrasound-assisted dispersive micro-solid phase extraction using molybdenum disulfide supported on reduced graphene oxide for energy dispersive X-ray fluorescence spectrometric determination of chromium species in water. Microchimica Acta. 2020; 187:1-0.
  54. Szostak R, Morais A, Carminati SA, Costa SV, Marchezi PE, Nogueira AF. Application of graphene and graphene derivatives/oxide nanomaterials for solar cells. InThe future of semiconductor oxides in next-generation solar cells 2018; 1 (pp. 395-437). Elsevier.
  55. Wang L, Xu L, Sun C, Qian Y. A general route for the convenient synthesis of crystalline hexagonal boron nitride micromesh at mild temperature. Journal of Materials Chemistry. 2009; 19(14):1989-94.
  56. Hsieh CT, Lin WH, Chen YF, Tzou DY, Chen PQ, Juang RS. Microwave synthesis of copper catalysts onto reduced graphene oxide sheets for non-enzymatic glucose oxidation. Journal of the Taiwan Institute of Chemical Engineers. 2017; 1;71:77-83.
  57. Wang B, He J, Liu F, Ding L. Rapid synthesis of Cu2O/CuO/rGO with enhanced sensitivity for ascorbic acid biosensing. Journal of Alloys and Compounds. 2017; 5;693:902-8.
  58. Huang GW, Xiao HM, Fu SY. based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability. Nanoscale. 2014; 6(15):8495-502.
  59. Ding S, Ying J, Chen F, Fu L, Lv Y, Zhao S, Ji G. Highly stretchable conductors comprising composites of silver nanowires and silver flakes. Journal of Nanoparticle Research. 2021; 23(4):111.
  60. Solopan SO, V’yunov OI, Belous AG, Polek TI, Tovstolytkin AI. Effect of nanoparticles agglomeration on electrical properties of La1− xAxMnO3 (A= Sr, Ba) nanopowder and ceramic solid solutions. Solid state sciences. 2012; 1;14(4):501-5.
  61. Gunnarsson O, Calandra M, Han JE. Colloquium: Saturation of electrical resistivity. Reviews of Modern Physics. 2003; 3;75(4):1085.
  62. Hu L, Kim HS, Lee JY, Peumans P, Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS nano. 2010; 25;4(5):2955-63.
  63. Wu HP, Liu JF, Wu XJ, Ge MY, Wang YW, Zhang GQ, Jiang JZ. High conductivity of isotropic conductive adhesives filled with silver nanowires. International journal of adhesion and adhesives. 2006; 1;26(8):617-21.
  64. Hui X, Nana X, Yuzhen Z, Yuehui W. Effect of silver nanowires on the resistivity of electronically conductive adhesives. Rare Metal Materials and Engineering. 2016; 1;45(10):2503-8.
  65. Nasikhudin N, Yusril A, Istiqomah I, Hari R, Markus D, and Herlin P. Silver Nanowires (AgNWs) Post-Treatment Effect in Application of Flexible Transparent and Conductive Electrodes: A Mini Review. Materials Science Forum. 2024; vol. 1118, pp. 47-57. Trans Tech Publications Ltd.
  66. Sarkar J, Khan GG, Basumallick A. Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template. Bulletin of Materials Science. 2007; 30:271-90.
  67. Li XS, Xiang XZ, Wang L, Bai XJ. Conductivity and mechanical properties of conductive adhesive with silver nanowires. Rare Metals. 2018; 37:191-5.
  68. Bellew AT, Manning HG, Gomes da Rocha C, Ferreira MS, Boland JJ. Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks. ACS nano. 2015 24;9(11):11422-9.
  69. Vogl LM, Kalancha V, Schweizer P, Denninger P, Wu M, Brabec C, Forberich K, Spiecker E. Influence of tin oxide decoration on the junction conductivity of silver nanowires. Nanotechnology. 2023 13;34(17):175706.
  70. Kelly AG, Hallam T, Backes C, Harvey A, Esmaeily AS, Godwin I, Coelho J, Nicolosi V, Lauth J, Kulkarni A, Kinge S. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science. 2017; 7;356(6333):69-73.
  71. Preston C, Fang Z, Murray J, Zhu H, Dai J, Munday JN, Hu L. Silver nanowire transparent conducting paper-based electrode with high optical haze. Journal of Materials Chemistry C. 2014;2(7):1248-54.