Grain refinement of austenitic stainless steels by cross rolling and annealing treatment: A review

Document Type : Review Paper

Authors

1 University of Tehran College of Engineering

2 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran

Abstract

The effects of cross rolling and annealing treatment, as an advanced thermomechanical processing route, on the microstructure and grain refinement of metastable austenitic stainless steels were overviewed. It was summarized that cross rolling promotes the formation of intersecting shear bands and leads to higher dislocation density, which are favorable for the formation of strain-induced α′-martensite. Moreover, contrary to unidirectional rolling, cross rolling retains the equiaxed morphology of grains. It was demonstrated and formulated that cross rolling and reversion/recrystallization annealing treatment leads to more intense grain refinement compared to the unidirectional rolling and annealing route, which is quite important for grain refinement of more stable grades. Future prospects include investigating the effects of special alloying elements, initial grain size, and deformation variables on the cross rolled microstructure, analyzing the kinetics parameters of the deformation-induced martensitic transformation during cross rolling, and characterizing the transformation-induced plasticity (TRIP) effect for the grain refined austenitic stainless steels and high-entropy alloys by cross rolling and annealing treatment.

Keywords


  1. Lo, K.H., Shek, C.H. and Lai, J.K.L., 2009. Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4-6), pp.39-104.
  2. dos Reis Silva, M.B., Cabrera, J.M., Balancin, O. and Jorge Jr, A.M., 2017. Thermomechanical controlled processing to achieve very fine grains in the ISO 5832-9 austenitic stainless steel biomaterial. Materials Characterization, 127, pp.153-160.
  3. Mandal, S., Bhaduri, A.K. and Subramanya Sarma, V., 2012. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel. Metallurgical and Materials Transactions A, 43, pp.2056-2068.
  4. Zhou, Z., Wang, S., Li, J., Li, Y., Wu, X. and Zhu, Y., 2020. Hardening after annealing in nanostructured 316L stainless steel. Nano Materials Science, 2(1), pp.80-82.
  5. Padilha, A.F., Plaut, R.L. and Rios, P.R., 2003. Annealing of cold-worked austenitic stainless steels. ISIJ international, 43(2), pp.135-143.
  6. Misra, R.D.K., Zhang, Z., Jia, Z., Surya, P.V., Somani, M.C. and Karjalainen, L.P., 2011. Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability. Materials Science and Engineering: A, 528(22-23), pp.6958-6963.
  7. Sohrabi, M.J., Mirzadeh, H. and Dehghanian, C., 2020. Significance of martensite reversion and austenite stability to the mechanical properties and transformation-induced plasticity effect of austenitic stainless steels. Journal of Materials Engineering and Performance, 29, pp.3233-3242.
  8. Karjalainen, L.P., Taulavuori, T., Sellman, M. and Kyröläinen, A.J.S.R.I., 2008. Some strengthening methods for austenitic stainless steels. Steel research international, 79(6), pp.404-412.
  9. Sohrabi, M.J., Mirzadeh, H., Sadeghpour, S. and Mahmudi, R., 2023. Explaining the drop of work-hardening rate and limitation of transformation-induced plasticity effect in metastable stainless steels during tensile deformation. Scripta Materialia, 231, p.115465.
  10. Järvenpää, A., Jaskari, M., Kisko, A. and Karjalainen, P., 2020. Processing and properties of reversion-treated austenitic stainless steels. Metals, 10(2), p.281.
  11. Li, J., Cao, Y., Gao, B., Li, Y. and Zhu, Y., 2018. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. Journal of Materials Science, 53(14), pp.10442-10456.
  12. Mirzadeh, H., 2023. Superplasticity of fine-grained austenitic stainless steels: A review. Journal of Ultrafine Grained and Nanostructured Materials, 56(1), pp.27-41.
  13. Sohrabi, M.J., Naghizadeh, M. and Mirzadeh, H., 2020. Deformation-induced martensite in austenitic stainless steels: a review. Archives of Civil and Mechanical Engineering, 20, p.124.
  14. Sohrabi, M.J., Mirzadeh, H., Sadeghpour, S. and Mahmudi, R., 2023. Dependency of work-hardening behavior of a metastable austenitic stainless steel on the nucleation site of deformation-induced martensite. Materials Science and Engineering: A, 868, p.144600.
  15. Tsuchida, N., Morimoto, Y., Tonan, T., Shibata, Y., Fukaura, K. and Ueji, R., 2011. Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel. ISIJ international, 51(1), pp.124-129.
  16. Sohrabi, M.J., Mirzadeh, H., Sadeghpour, S., Geranmayeh, A.R. and Mahmudi, R., 2024. Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel. International Journal of Minerals, Metallurgy and Materials, 31(9), pp.2025-2036.
  17. Naraghi, R., Hedström, P. and Borgenstam, A., 2011. Spontaneous and Deformation‐Induced Martensite in Austenitic Stainless Steels with Different Stability. steel research international, 82(4), pp.337-345.
  18. Sohrabi, M.J., Kalhor, A., Mirzadeh, H., Rodak, K. and Kim, H.S., 2024. Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review. Progress in Materials Science, 144, p.101295.
  19. Sohrabi, M.J., Mirzadeh, H., Sadeghpour, S., Aghdam, M.Z., Geranmayeh, A.R. and Mahmudi, R., 2024. Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels. International Journal of Minerals, Metallurgy and Materials, 31(10), pp.2182-2188.
  20. Lee, C.Y., Yoo, C.S., Kermanpur, A. and Lee, Y.K., 2014. The effects of multi-cyclic thermo-mechanical treatment on the grain refinement and tensile properties of a metastable austenitic steel. Journal of Alloys and Compounds, 583, pp.357-360.
  21. Iwamoto, T., Tsuta, T. and Tomita, Y., 1998. Investigation on deformation mode dependence of strain-induced martensitic transformation in trip steels and modelling of transformation kinetics. International Journal of Mechanical Sciences, 40(2-3), pp.173-182.
  22. Parnian, P., Parsa, M.H., Mirzadeh, H. and Jafarian, H.R., 2017. Effect of drawing strain on development of martensitic transformation and mechanical properties in AISI 304L stainless steel wire. steel research international, 88(8), p.1600423.
  23. Sun, G., Du, L., Hu, J. and Zhang, B., 2020. Significant influence of rolling modes on martensitic transformation, microstructural evolution and texture development in a 304 stainless steel. Materials Characterization, 159, p.110073.
  24. Mohammadzehi, S., Mirzadeh, H., Sohrabi, M.J., Roostaei, M. and Mahmudi, R., 2023. Elucidating the effects of cold rolling route on the mechanical properties of AISI 316L austenitic stainless steel. Materials Science and Engineering: A, 865, p.144616.
  25. Nezakat, M., Akhiani, H., Penttilä, S., Sabet, S.M. and Szpunar, J., 2015. Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water. Corrosion Science, 94, pp.197-206.
  26. Mohammadzehi, S., Roostaei, M., Mirzadeh, H., Mahmudi, R. and Weißensteiner, I., 2024. Effect of cold rolling route and annealing on the microstructure and mechanical properties of AISI 316 L stainless steel. Materials Characterization, 214, p.114072.
  27. Eskandari, M., Kermanpur, A. and Najafizadeh, A., 2009. Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metallurgical and Materials Transactions A, 40, pp.2241-2249.
  28. Rezaee, A., Kermanpur, A., Najafizadeh, A., Moallemi, M. and Baghbadorani, H.S., 2013. Investigation of cold rolling variables on the formation of strain-induced martensite in 201L stainless steel. Materials & Design (1980-2015), 46, pp.49-53.
  29. Jiang, Y., Zhou, X. and Li, X.Y., 2021. Effects of cross rolling on multiple twinning and martensitic transformation in an austenitic steel. Materials Science and Engineering: A, 822, p.141703.
  30. Spencer, K., Embury, J.D., Conlon, K.T., Véron, M. and Bréchet, Y., 2004. Strengthening via the formation of strain-induced martensite in stainless steels. Materials Science and Engineering: A, 387, pp.873-881.
  31. Sohrabi, M.J., Mehranpour, M.S., Lee, J.H., Heydarinia, A., Mirzadeh, H. and Kim, H.S., 2024. Overcoming strength-ductility trade-off in Si-containing transformation-induced plasticity high-entropy alloys via metastability engineering. Materials Science and Engineering: A, p.146766.
  32. Mehranpour, M.S., Sohrabi, M.J., Kalhor, A., Lee, J.H., Heydarinia, A., Mirzadeh, H., Sadeghpour, S., Rodak, K., Nili-Ahmadabadi, M., Mahmudi, R. and Kim, H.S., 2024. Exceptional strength-ductility synergy in the novel metastable FeCoCrNiVSi high-entropy alloys via tuning the grain size dependency of the transformation-induced plasticity effect. International Journal of Plasticity, 182, p.104115.
  33. Amininejad, A., Jamaati, R. and Hosseinipour, S.J., 2020. Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling. Materials Chemistry and Physics, 256, p.123668.
  34. Rout, M., 2020. Texture-tensile properties correlation of 304 austenitic stainless steel rolled with the change in rolling direction. Materials Research Express, 7(1), p.016563.
  35. Hu, J., Marciniak, Z. and Duncan, J. eds., 2002. Mechanics of sheet metal forming. Elsevier.
  36. Mohammadzehi, S. and Mirzadeh, H., 2022. Cold unidirectional/cross-rolling of austenitic stainless steels: a review. Archives of Civil and Mechanical Engineering, 22(3), p.129.
  37. Xu, L.Z., Qiao, G.Y., Lu, X.X., Gu, Y., Xu, K., Chen, X.W. and Xiao, F.R., 2024. Study on the relationship between microstructure and properties of heavy-wall X70 pipeline steel with different processing directions. Materials Chemistry and Physics, 314, p.128850.
  38. Kazemi-Navaee, A., Jamaati, R. and Aval, H.J., 2023. Effect of single roll drive rolling on microstructure, texture, and mechanical property anisotropy of Al-5.6Zn-2.5Mg-1.4Cu aluminum alloy. Transactions of Nonferrous Metals Society of China, 33(11), pp.3266-3281.
  39. Shaabani, A., Jamaati, R. and Hosseinipour, S.J., 2024. Mechanical anisotropic behavior of low-carbon steel processed by asymmetric rolling. Heliyon, 10, p.e34004.
  40. Li, J., Cheng, W., Chen, M., Liu, T., Zhao, Y., Wang, M., Mao, Q., Sun, Y., Li, Y. and Qin, W., 2022. Formation mechanism of the eye-shaped nano-twin bundles in cold rolled 316L stainless steel. Vacuum, 206, p.111557.
  41. Romero-Resendiz, L., El-Tahawy, M., Zhang, T., Rossi, M.C., Marulanda-Cardona, D.M., Yang, T., Amigó-Borrás, V., Huang, Y., Mirzadeh, H., Beyerlein, I.J. and Huang, J.C., 2022. Heterostructured stainless steel: Properties, current trends, and future perspectives. Materials Science and Engineering: R: Reports, 150, p.100691.
  42. Li, J., Gao, B., Huang, Z., Zhou, H., Mao, Q. and Li, Y., 2018. Design for strength-ductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing. Vacuum, 157, pp.128-135.
  43. Liu, T., Li, J., Cheng, W., Li, Z., Jiang, W., Qin, W., Duan, Y., Mao, Q., Wang, Z. and Mao, J., 2024. Formation mechanisms of heterostructures in 304L stainless steel processed by cold rolling and annealing. Vacuum, 223, p.113104.
  44. Shirdel, M., Mirzadeh, H. and Habibi Parsa, M., 2014. Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metallurgical and Materials Transactions A, 45, pp.5185-5193.
  45. Naghizadeh, M. and Mirzadeh, H., 2016. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metallurgical and Materials Transactions A, 47, pp.5698-5703.
  46. Shirdel, M., Mirzadeh, H. and Parsa, M.H., 2014. Abnormal grain growth in AISI 304L stainless steel. Materials characterization, 97, pp.11-17.
  47. Savaedi, Z., Mirzadeh, H., Aghdam, R.M. and Mahmudi, R., 2022. Effect of grain size on the mechanical properties and bio-corrosion resistance of pure magnesium. Journal of Materials Research and Technology, 19, pp.3100-3109.
  48. Al-Fadhalah, K. and Aleem, M., 2018. Microstructure refinement and mechanical properties of 304 stainless steel by repetitive thermomechanical processing. Metallurgical and Materials Transactions A, 49, pp.1121-1139.
  49. Eskandari, M., Zarei-Hanzaki, A. and Abedi, H.R., 2013. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels. Materials & Design, 45, pp.674-681.
  50. Schino, A.D., Salvatori, I. and Kenny, J.M., 2002. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. Journal of Materials Science, 37, pp.4561-4565.
  51. Somani, M.C., Jaskari, M., Sadeghpour, S., Hu, C., Misra, R.D.K., Nyo, T.T., Yang, C. and Karjalainen, L.P., 2020. Improving the yield strength of an antibacterial 304Cu austenitic stainless steel by the reversion treatment. Materials Science and Engineering: A, 793, p.139885.
  52. Al-Fadhalah, K.J., Al-Attal, Y. and Rafeeq, M.A., 2022. Microstructure Refinement of 301 Stainless Steel via Thermomechanical Processing. Metals, 12(10), p.1690.
  53. Ueji, R., Tsuji, N., Minamino, Y. and Koizumi, Y., 2002. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Materialia, 50(16), pp.4177-4189.
  54. Ajami, A., Mirzadeh, H. and Najafi, M., 2020. Tempering of cold-rolled martensite in mild steel and elucidating the effects of alloying elements. Journal of Materials Engineering and Performance, 29, pp.858-865.
  55. Nakada, N., Arakawa, Y., Park, K.S., Tsuchiyama, T. and Takaki, S., 2012. Dual phase structure formed by partial reversion of cold-deformed martensite. Materials Science and Engineering: A, 553, pp.128-133.
  56. Alibeyki, M., Mirzadeh, H. and Najafi, M., 2018. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite. Vacuum, 155, pp.147-152.
  57. Najafi, M., Mirzadeh, H. and Alibeyki, M., 2019. Tempering of deformed and as-quenched martensite in structural steel. Journal of Mining and Metallurgy, Section B: Metallurgy, 55(1), pp.95-99.
  58. Zhang, W., Ma, Z., Zhao, H. and Ren, L., 2021. Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing. Materials Science and Engineering: A, 800, p.140264.
  59. Sohrabi, M.J., Mirzadeh, H., Geranmayeh, A.R. and Mahmudi, R., 2023. Grain size dependent mechanical properties of CoCrFeMnNi high-entropy alloy investigated by shear punch testing. Journal of Materials Research and Technology, 27, pp.1258-1264.
  60. Figueiredo, R.B., Kawasaki, M. and Langdon, T.G., 2023. Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress. Progress in Materials Science, 137, p.101131.
  61. Mehranpour, M.S., Heydarinia, A., Emamy, M., Mirzadeh, H., Koushki, A. and Razi, R., 2021. Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation. Materials Science and Engineering: A, 802, p.140667.
  62. Shakhova, I., Dudko, V., Belyakov, A., Tsuzaki, K. and Kaibyshev, R., 2012. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Materials Science and Engineering: A, 545, pp.176-186.
  63. Qin, W., Li, J., Liu, Y., Kang, J., Zhu, L., Shu, D., Peng, P., She, D., Meng, D. and Li, Y., 2019. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Materials Letters, 254, pp.116-119.
  64. Golrang, M., Mobasheri, M., Mirzadeh, H. and Emamy, M., 2020. Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5 Ca-0.5 RE magnesium alloy. Journal of Alloys and Compounds, 815, p.152380.
  65. Kisko, A., Misra, R.D.K., Talonen, J. and Karjalainen, L.P., 2013. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Materials Science and Engineering: A, 578, pp.408-416.
  66. Olson, G.B. and Cohen, M., 1975. Kinetics of strain-induced martensitic nucleation. Metallurgical Transactions A, 6, pp.791-795.
  67. Shirdel, M., Mirzadeh, H. and Parsa, M.H., 2015. Enhanced mechanical properties of microalloyed austenitic stainless steel produced by martensite treatment. Advanced Engineering Materials, 17(8), pp.1226-1233.
  68. Guimaraes, J.R.C., 1972. The deformation-induced martensitic reaction in polycrystalline Fe-30.7 Ni-0.06 C. Scripta Metallurgica, 6(9), pp.795-798.
  69. Shin, H.C., Ha, T.K. and Chang, Y.W., 2001. Kinetics of deformation induced martensitic transformation in a 304 stainless steel. Scripta Materialia, 45(7), pp.823-829.
  70. Ahmedabadi, P.M., Kain, V. and Agrawal, A., 2016. Modelling kinetics of strain-induced martensite transformation during plastic deformation of austenitic stainless steel. Materials & Design, 109, pp.466-475.
  71. Tavares, S.S.M., Pardal, J.M., Da Silva, M.G., Abreu, H.F.G.D. and da Silva, C.R., 2009. Deformation induced martensitic transformation in a 201 modified austenitic stainless steel. Materials characterization, 60(8), pp.907-911.
  72. Sohrabi, M.J., Mehranpour, M.S., Heydarinia, A., Kalhor, A., Lee, J.H., Mirzadeh, H., Mahmudi, R., Parsa, M.H., Rodak, K. and Kim, H.S., 2024. Deformation-induced martensitic transformation kinetics in TRIP-assisted steels and high-entropy alloys. Acta Materialia, 280, p.120354.
  73. Liu, L., He, B. and Huang, M., 2018. The role of transformation‐induced plasticity in the development of advanced high strength steels. Advanced Engineering Materials, 20(6), p.1701083.
  74. Jain, A. and Varshney, A., 2024. A critical review on deformation-induced transformation kinetics of austenitic stainless steels. Materials Science and Technology, 40(2), pp.75-106.
  75. Mohammadzehi, S., Mirzadeh, H. and Mahmudi, R., 2024. Shear mechanical properties of AISI 316L stainless steel processed by unidirectional/cross rolling and annealing treatment. Materials Chemistry and Physics, 327, p.129928.
  76. Reddy, S.R., Ahmed, M.Z., Sathiaraj, G.D. and Bhattacharjee, P.P., 2017. Effect of strain path on microstructure and texture formation in cold-rolled and annealed FCC equiatomic CoCrFeMnNi high entropy alloy. Intermetallics, 87, pp.94-103.
  77. Saha, J., Saha, R. and Bhattacharjee, P.P., 2022. Microstructure and texture development in CoCrNi medium entropy alloy processed by severe warm cross-rolling and annealing. Intermetallics, 143, p.107463.
  78. Wu, W., Ni, S., Liu, Y. and Song, M., 2016. Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. Journal of Materials Research, 31(24), pp.3815-3823.
  79. Savaedi, Z., Mirzadeh, H., Aghdam, R.M. and Mahmudi, R., 2022. Thermal stability, grain growth kinetics, mechanical properties, and bio-corrosion resistance of pure Mg, ZK30, and ZEK300 alloys: A comparative study. Materials Today Communications, 33, p.104825.
  80. Guduru, R.K., Darling, K.A., Kishore, R., Scattergood, R.O., Koch, C.C. and Murty, K.L., 2005. Evaluation of mechanical properties using shear–punch testing. Materials Science and Engineering: A, 395(1-2), pp.307-314.
  81. Ghaemifar, S. and Mirzadeh, H., 2023. Shear punch testing for evaluation of mechanical properties of post heat-treated Inconel 718 nickel-based superalloy fabricated by additive manufacturing. Journal of Materials Research and Technology, 26, pp.8071-8078.
  82. Zergani, A., Mirzadeh, H. and Mahmudi, R., 2024. Annealing of an Austenitic Stainless Steel Deformed Under Shear Loading. Metallography, Microstructure, and Analysis, 13, pp. 13:436–442.