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1. Introduction
The various components involved in machining 

processes may experience severe friction during the 
service condition. The application of metalworking 
fluids (MWFs) and metal cutting fluids (MCFs) 
are found to be strongly effective in the reduction 
of such frictions. They can also be employed as 
coolant agents. Nevertheless, these fluids may 
drastically pollute the environment by introducing 

a large amount of oil and other organic/inorganic 
compounds into the wastewater. MWFs and MCFs 
are chemically complex compounds containing 
performance tailoring additives, various kinds 
of surfactants, complex components, corrosion 
inhibitors, alkaline reverse compounds, and anti-
weld agents, which may result in the high COD 
content [1-5]. In general, there are two major 
types of MWFs as follows: (i) water-based and 
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(ii) oil-based MWFs [6,7]. The drinking water, 
groundwater, human health, etc. are deeply 
affected by incorporation of un-treated MWFs 
and MCFs wastewaters into the environment. 
Albeit there are several approaches to treat the 
MWFs wastewaters, more researches should be 
performed to fulfill the complete removal of their 
harmful elements and components. Considering 
the annual incorporation of several million liters 
of these fluids into the wastewater, it is essential to 
assess different approaches to achieve the highest 
performance [8-15]. Generally, three methods, 
namely physicochemical, physicomechanical, and 
biological treatments, have been developed for 
treating MWFs wastewater. Solvent extraction, 
catalytic oxidation, and chemical flocculation are 
some of the frequently employed physicochemical 
treatments. Since most of the physicochemical 
methods are expensive and technically difficult 
to be utilized, they have often been used as a 
pre-treatment step in wastewater remediation. 
Thermal splitting, incineration, evaporation, 
and ultrafiltration fall under the classification of 
physicomechanical approaches. Biological routes 
include membrane separation, advanced oxidation 
process, and etc. Nevertheless, these methods are 
not able to fully remove the oil and other effluents 
from MWFs wastewater. A significant challenge 
in these systems is the disposal of the residual 
sludge, which increases overall costs [16-24]. To 
overcome the disability of the aforementioned 
methods in terms of complete removal of effluents 
from MWFs wastewater, one practical approach 
is the simultaneous use of two or more methods, 
namely hybrid methods [25-28]. Furthermore, 
it is possible to improve the efficiency of MWFs 
wastewater treatment through the application of 
post-treatment [3]. 

Generally, advanced oxidative degradation 
processes (AOPs) such as Fenton oxidation are 
employed to diminish and even fully remove the 
organic contaminations of various wastewaters 
through oxidation reactions. The processes 
may proceed via the transformation of such 
contaminations to CO2 and inorganic ions. Fenton 
oxidation method possesses several advantages, 
as follows: (i) low cost, (ii) acceptable safety, (iii) 
providing desirable mineralization of the organic 
matter, and (iv) providing a suitable platform for 
performing post-biological treatments [29-32]. 

Coagulation flocculation is an appropriate 
chemical treatment for remediation of different 
types of industrial wastewaters, and it can 
satisfactorily remove the organic materials, thereby 
decreasing the COD. Similar to Fenton oxidation, 
coagulation-flocculation is a simple and cost-
effective route. Additionally, it can separate various 
kinds of particles from MWFs wastewaters [33-

36]. Among various AOPs, the application of 
H2O2 and Fenton main reagent, i.e., homogeneous 
Fenton process, has been widely reported as a 
homogeneous catalytic process for the removal 
of the various pollutants, especially dyes [37]. 
However, the so-called “homogeneous Fenton 
process” has some potential drawbacks, including 
the need to be operated in a strongly acidic 
conditions, the production of iron-containing 
sludge as a by-product to be further removed, 
and the catalyst deactivation by some produced 
intermediates in complex matrices encountered in 
real industrial applications [38]. These drawbacks 
can be overcome through the development and 
use of heterogeneous Fenton-type catalysts such 
as iron-substituted synthetic and natural minerals 
such as natural and synthetic zeolites [39], laponite 
[40], pyrite [41], magnetite [42], goethite [43], and 
pillared clays [44] catalyze the production of OH. 
radicals. Among them, iron-substituted zeolites 
have been efficiently used within heterogeneous 
Fenton-type processes because of their unique 
physical and chemical properties, including 
crystallinity and stability in harsh chemical and 
thermal environments [43-50].

The present work, for the first time, deals with the 
evaluation of the influence of processing parameters 
on the performance of heterogeneous nano-zeolite 
catalyzing Fenton-like oxidation processes. It 
also attempts to make a comparison between the 
efficiency of three different methods, including 
coagulation-flocculation, Fenton oxidation, and 
heterogeneous Fenton-like oxidation processes in 
treating wastewater of a locally developed MWF.       

2. Materials and methods
2.1. Raw wastewater characteristics  

 In the present investigation, 1.2 wt.% mineral 
oil-containing MWF wastewater was used to study 
the efficiency of the various treatment methods. 
Inorganic and organic corrosion inhibitors, 
stabilizers, and anionic surfactant agents are among 
the other existing compounds in the studied 
MWF composition. The main organic ingredients 
of the MWF are Triethanolamine (TEA) and 
some sodium salts of sulfonated petroleum cuts. 
Water-soluble MWF was developed locally in our 
laboratory and used successfully in small-scale 
local industries during the past decade.  Table 1 
outlines the physicochemical characteristics of the 
used MWF wastewater. 

All of the other used chemicals were supplied 
by Merck & Co., Inc. with the analytical grade. 
Notably, the as-received chemicals were employed 
without any further treatment and/or purification. 
During the experiments, the volumetric 
concentration of H2O2 was adjusted at 27% by the 
titration method.
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2.2. Coagulation-flocculation 
The major goal of the coagulation-flocculation 

process is aggregating the present small particles 
within the colloid to form the big flocculent 
particles. Iron (III) chloride (FeCl3) is known as 
a favorable coagulant. FeCl3 can strongly adsorb 
the present particles when it is being incorporated 
into the colloid. To perform the coagulation-
flocculation process, firstly, 500 ml of MWF 
wastewater was added to a 1000 ml beaker. In the 
next step, FeCl3 at various dosages was incorporated 
into the existing MWF wastewater in the beaker to 
determine the optimum concentration of FeCl3. 
Then, a two-step successive blending process was 
carried out, as follows: (i) rapid blending (150 rpm 
for 7 min); and (ii) slow blending (30 rpm for 25 
min). Then, the mixing process stopped for 45 min 
in order to obtain the jelly-like deposit. Colloid 

pH was controlled at 8.20.4 by the incorporation 
of H2SO4 and/or NaOH. Fig. 1 shows the 
schematic illustration of the employed setup for 
the coagulation-flocculation process in the present 
study. 

2.3. Fenton oxidation process
Four sequential steps are involved in Fenton 

oxidation as: (i) oxidation, (ii) neutralization, (iii) 
coagulation/flocculation, and (iv) separation of 
solid-liquid. The major chemical compound used 
in this process is hydrogen peroxide (H2O2), an 
oxidant that is usually employed for the treatment 
of the different organic and inorganic effluents. 
Hydrogen peroxide firstly reduces to hydroxyl 
radicals during the Fenton oxidation process. The 
chemical reactions that governed this reduction 
process are reported elsewhere [2, 29]. 

 

Physicochemical characteristics Value 

pH 8.6 

Temperature 27 oC 

Color Pale yellow-colorless 

COD Approx. 32000 mg/L 

BOD5 Approx. 2500 mg/L 

BOD5 /COD 0.078 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
Fig. 1. The schematic illustration of the employed setup for the coagulation-flocculation process.    

Fig. 1- The schematic illustration of the employed setup for the coagulation-flocculation process.

Table 1- The physicochemical characteristics of the used MWF wastewater.
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In the present work, the Fenton oxidation 
process was performed via a conventional jar test 
apparatus, where 500 ml of MWF wastewater was 
injected into the 1000 ml individual beakers at room 
temperature. MWF wastewater pH was adjusted at 
3.60.3 by adding the specified amounts of H2SO4 
(99% purity). Then, ferrous sulfate (FeSO4.7H2O) 
and hydrogen peroxide were incorporated into the 
beakers, respectively. Similar to Fenton oxidation, 
the prepared mixture underwent a two-step mixing 
process as: (i) rapid mixing (150 rpm for 7 min) 
and (ii) slow mixing (30 rpm for 25 min). Then, 
the blending process stopped and the mixture was 
heated to 55 oC to remove the excess hydrogen 
peroxide. Finally, NaOH was incorporated into 
the mixture to finish the oxidation process of the 
hydrogen peroxide. It is to be noted that significant 
amounts of the iron sludge originated from the 
conversion of Fe3+ to hydroxo complexes formed 
during this process. Fig. 2 indicates the schematic 
demonstration of the used setup for the Fenton 
oxidation process in the present study. 

2.4. Heterogeneous Fenton-like oxidation process
Although this process is similar to the 

conventional Fenton oxidation in terms of the 
experimental procedure, the recently developed 
Fe-substituted zeolite-based nanocatalyst is used 
within the heterogeneous Fenton-like process 
along with a much lower dosage of hydrogen 
peroxide with no further ferrous sulfate required. 
The synthesis method and characteristics of the 
used Fe-substituted zeolite have been reported 
previously [46]. The heterogeneous Fenton-like 
oxidation is able to eliminate the entire present 
chemicals, which is considered as an outstanding 
advantage from both economic and environmental 
perspectives. The results reported the acceptable 
performance of the abovementioned nanocatalyst 
in removing the pollutant organic dyes from the 
wastewaters through a heterogeneous Fenton-like 
oxidation process [46]. All experimental runs were 
performed in the batch mode (1000 ml beaker) 
under constant magnetic stirring at 180 rpm. 500 
mL MWF wastewater solutions were treated for 
30 min using a variety of catalyst dosages, i.e., 1-6 
g/L. The pH of the solution was adjusted by the 
addition of 1M H2SO4 and/or NaOH solutions. 
Fig. 3 schematically indicates the setup used for 
heterogeneous Fenton-like oxidation process in the 
present study.

2.5. COD determination
After completion of the Fenton oxidation 

process within 1 hour, the colloidal medium divides 
into two parts of supernatant and sludge including. 
To study the reduction in COD, the supernatant 
solutions were filtered using a conventional ultra-

fine filter paper followed by dilution using distilled 
water. The dichromate reflux standard route 
was employed to measure the COD values. The 
reported values are the average of three separate 
measurements. 

2.6. Characterization 
The surface morphology and chemical 

composition of the Fe-substituted zeolite powder 
were evaluated using a field-emission scanning 
electron microscopy (FESEM, MIRA 3 Tescan, 
Czech Republic) equipped with energy dispersive 
spectroscopy (EDS), respectively. 

The phase composition of the powder was 
studied by the X-ray diffraction (XRD, Tongda, 
TD-3700, China) in the 2θ range of 10-80o.

3. Results 
3.1. Microstructural characteristics 

The FESEM photograph and EDS elemental 
mapping images of the Fe-substituted zeolite 
powder are displayed in Fig. 4. The nano-scaled 
pores are seen in the FESEM image of the powder. 
The primary morphology of the powder is 
cuboctahedron-shaped. The similar morphology 
has been reported in the already published literature 
[51]. Fiber-like grains can also be observed in the 
FESEM image. Fig. 5 shows a high-magnification 
FESEM image of the powder to provide a clear view 
of the “fiber-like” grains. The nanopores are shown 
by arrows in the figure. The EDS elemental mapping 
images illustrate the presence of Si, Al, O, Ca, Fe, 
Na, and K elements that uniformly dispersed in the 
microstructure of the powder.

Fig. 6 shows the XRD pattern of the Fe-
substituted zeolite powder. The phase composition 
of the powder is made of clinoptilolite phase 
according to the JCPDS 01-079-1461 reference 
card. Clinoptilolite is the precursor of the zeolite. 
The main peak is appeared at 2Ө ≈ 22°. Scherrer 
equation was used to calculate the crystallite size of 
the powder [52]. The crystallite size of the powder 
is 38 nm, which approves that the powder used is a 
nanostructured material. 

3.2. COD removal efficiency 
Table 2 summarizes the COD removal 

efficiency and volume of the produced sludge for 
three different methods, including coagulation-
flocculation, Fenton oxidation, and heterogeneous 
nano zeolite catalyzing Fenton-like oxidation 
processes.

The heterogeneous nano zeolite catalyzing 
Fenton-like oxidation process exhibits the highest 
COD removal efficiency. Furthermore, this method 
provides the lowest sludge volume, which leads to 
a dramatic decrease in the overall cost of the MWF 
wastewater remediation process. The application of 
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Fig. 3. The schematic demonstration of the used setup for heterogeneous Fenton-like oxidation process.  

Fig. 3- The schematic demonstration of the used setup for heterogeneous Fenton-like oxidation process.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
Fig. 2. The schematic demonstration of the used setup for the Fenton oxidation process.  

 
 
 
 
 
 
 
 
 

Fig. 2- The schematic demonstration of the used setup for the Fenton oxidation process.
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FESEM image 

 

EDS elemental mapping 

   

   
 

Fig. 4- The FESEM photograph and EDS elemental mapping images of the Fe-substituted zeolite powder.
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the nanocatalyst decreases the need for hydrogen 
peroxide, resulting in decreased final cost of the 
procedure. Moreover, it can be easily seen that 
the processing parameters can noticeably alter the 
COD removal efficiency and sludge production 
in all of the studied methods. The effect of these 
parameters will be comprehensively discussed in 
the following sections.

3.3. Influence of Iron (III) chloride dosage within 
the coagulation-flocculation process

As can be seen from Table 2, increasing the 

amount of FeCl3 in C.F process from 10 to 50 
g/L increases the COD removal efficiency and 
totally produced sludge volume by 12 % and 
150 ml/L, respectively. The improved COD 
removal efficiency may be attributed to the 
higher concentration of the available Fe3+ active 
sites for the organic materials to be neutralized 
and adsorbed within C.F process. On the other 
hand, a high volume of the produced sludge in 
this case which leads to a need for subsequent 
treatments, prevails over the mentioned 
advantage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. XRD pattern of the Fe-substituted zeolite powder. 

Fig. 6- XRD pattern of the Fe-substituted zeolite powder.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5- High-magnification FESEM image of the Fe-substituted zeolite powder.
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3.4. Influence of ferrous sulfate dosage within the 
Fenton oxidation process

As is evident in Table 2, at an optimum hydrogen 
peroxide concentration of 50g/L, ferrous sulfate 
dosage variation from 10 to 50g/L has no profound 
effect on both COD removal and produced sludge 
volume. While COD removal efficiency in this 
method is comparable to that of C.F, a considerable 
drop in sludge volume production is observable in 
F.O, as its main superiority over the C.F process.  

3.5. Influence of nanocatalyst dosage within the 
heterogeneous Fenton-like oxidation process 

It is worth mentioning that all of the measurements 
were carried out at the constant solution pH of 
5. The increase in nanocatalyst dosage from 1 to 
6 g/L can result in the COD removal efficiency 
enhancement by 6%. Also, the produced sludge 
volume is in the range of 35-45 ml/L in this method 
which is about an order of magnitude less than that 
of the aforementioned processes. Higher COD 
removal efficiency, together with quite low sludge 
volume, make this approach as an industrially 
promising method for MWF wastewater treatment. 
To the best of our knowledge, there is no study 
reporting the efficiency of the zeolite-based 
nanocatalysts in MWF wastewater treatment; 
however, the application of such a nanocatalyst has 

been demonstrated to yield promising outcomes 
in wastewater treatment. For instance, Yang et al. 
[53] have employed Fe2O3 nanoparticles-reinforced 
zeolite Y matrix composite catalysts to remove 
organics in particular phenol. They reported that 
the degradation rate is varied in a range of 45-90% 
depending on the Fe content, time, and size of the 
Fe2O3 nanoparticles. Comparing with results of the 
present work, it is not difficult to recognize that the 
employed heterogeneous nano zeolite catalyzing 
Fenton-like oxidation process results in acceptable 
efficiency.  

3.6. Influence of pH value
The MWF wastewater with a wide range of pH 

values can be released due to several reasons such 
as the composition of the treated metal, chemical 
composition of the used fluid, and etc. Therefore, 
it is crucial to assess whether the developed 
heterogeneous nano zeolite catalyzing Fenton-
like oxidation process is able to preserve its COD 
efficiency over the wide pH range. To meet this 
issue, the effect of MWF solution pH on the COD 
removal efficiency of this process at the constant 
nanocatalyst dosage of 6 g/L, i.e., the optimum 
nanocatalyst concentration is evaluated. In this 
case, MWF solution pH was controlled by the 
addition of H2SO4 and/or NaOH 1M solutions in 

 
 
 
 
 
 
 
 
 
 
 

Process 
Type 

H2O2 (g/L) FeSO4.7H2O (g/L) 
FeCl3 
(g/L) 

Fe-substituted zeolite-
based nanocatalyst 

(g/L) 

COD removal 
efficiency (%) 

Produced Sludge 
Volume (ml/L) 

C.F - - 10 - 75 420 

C.F - - 25 - 83 480 

C.F - - 35 - 85 510 

C.F - - 50 - 87 570 

F.O 50 10 - - 83 240 

F.O 50 25 - - 85 260 

F.O 50 35 - - 87 270 

F.O 50 50 - - 87 290 

H.N.F 5 - - 1 87 35 

H.N.F 5 - - 2 89 42 

H.N.F 5 - - 3 91 43 

H.N.F 5 - - 6 93 45 

   
 

Table 2- COD removal efficiency and volume of the produced sludge for three different methods, including coagulation-flocculation 
(C.F), Fenton oxidation (F.O), and heterogeneous nano zeolite catalyzing Fenton-like oxidation (H.N.F) processes.
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the range of 5-9. The correlation between the MWF 
solution pH and COD removal is presented in 
Fig.7.  

As seen, pH value has a negligible effect on the 
COD removal efficiency of the process, which is 
associated with the published results [54]. The 
results pave the way for the designing a high-
efficiency heterogeneous Fenton-like procedure 
which is not restricted to a limited range of 
acidic pH values and can be applied over a wide 
range of pH.        

3.7. Catalyst stability and cycleability
There is a tremendous need for the application 

of catalysts that offer long-term stability along with 
a high level of reusability in wastewater treatment. 
Complementary experiments in the batch mode 
were performed at a nanocatalyst dosage of 6 g/L 
to investigate the stability and cycleability of the 
nanocatalyst applied in H.N.F process. All COD 
removal efficiencies remained higher than 90% 
after 21 batches of treatment. The COD removal 
efficiency was declined sharply beyond 35 batch 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 7. The correlation between the MWF solution pH and COD removal efficiency of the process at constant 

nanocatalyst dosage of 6 g/L.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 8. COD removal efficiency variation of nanocatalyst with the optimum dosage, i.e., 6 g/L as a function of 

batch numbers.  Fig. 8- COD removal efficiency variation of nanocatalyst with the optimum dosage, i.e., 6 g/L as a function of batch numbers.

Fig. 7- The correlation between the MWF solution pH and COD removal efficiency of the process at 
constant nanocatalyst dosage of 6 g/L.
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operations and reached a value of 46%. As a result, 
the maximum useful life of the nanocatalyst can be 
considered to be about 20 batches of treatment. Fig. 
8 shows the COD removal efficiency variation of 
the nanocatalyst with the optimum dosage, i.e., 6 
g/L as a function of batch numbers.

4. Discussion 
In general, a catalyst can enhance the reaction 

speed through three mechanisms, as follows: 
(i) providing a facilitated substrate for reacting 
species to react more efficiently; (ii) decreasing the 
activation energy needed for reaction initiation; and 
(iii) increasing the yield of one specific product when 
there would be two or more products. However, 
the thermodynamic aspects of the reaction remain 
almost unchanged. To date, scholars have benefited 
from a broad spectrum of nanocatalysts such as 
carbon nanotubes (CNTs), zero-valent iron, zeolite, 
Fe3O4, and TiO2 for purification and treatment of 
wastewater released from various industries. The 
application of nano-scale materials as catalyst 
bears two major advantages over the conventional 
(micron-scaled) catalysts as: (i) emerging some 
specific properties when a material gets smaller 
to nano-scale and (ii) profound increment in the 
surface area-volume ratio which contributes to the 
improved catalyst efficiency [55-58]. Besides, the 
unique characteristics offered by nanocatalysts, 
including surface catalysis, high surface area, fast 
ion exchange, etc., open up new horizons in the 
successful use of nano-catalysts in wastewater 
treatment [59]. 

Overall, there are two potential challenges, 
namely the need for a low pH and the production 
of noticeable sludge content that commonly 
faces during the conventional Fenton oxidation, 
which is believed to be bypassed through the 
application of the appropriate nanocatalyst [60]. 
Depending on the employed catalyst, the Fenton 
oxidation process can be categorized into two 
main groups: homogeneous and heterogeneous. 
The reaction proceeds on the active sites that 
exist over the surface of the catalyst within the 
heterogeneous Fenton-like process. This is shown 
to drastically limit leaching during the process. 

The heterogeneous Fenton-like oxidation exhibits 
several advantages over the homogenous one. The 
most highlighted superiority of the heterogeneous 
Fenton oxidation is that there is no need for an 
acidic medium for reaction initiation & proceeding. 
Recently, the application of various nanocatalysts 
for heterogeneous Fenton-like degradation of the 
various pollutants from industrial wastewaters has 
received great attention [61-70].    

The volume fraction of incorporated nanocatalyst 
plays a key role in determining the final efficiency. 
For instance, Sun et al. [54] addressed the influence 
of nano-Fe3O4 catalyst concentration in a Fe3O4/
H2O2 system. They have reported the tremendous 
role of nano-Fe3O4 catalyst concentration during 
the homogeneous Fenton-like degradation of 
compound carbamazepine (CBZ) from the polluted 
wastewater, where the degradation efficiency 
increases with increasing the Fe3O4 concentration, 
followed by reaching a steady state. Besides, the 
influence of the amount of H2O2 should not be 
neglected since a similar trend in degradation 
efficiency by changing the Fe3O4 content has 
been attained for H2O2 dosage. In the present 
survey, it can be seen a direct relation between 
Fe-substituted zeolite nanocatalyst concentration 
and COD removal efficiency (see Table 2). Scheme 
1 illustrates the proposed mechanism of COD 
removal by means of a heterogeneous nano-
Fenton-like oxidation process.

According to the literature, the surface which 
serves as a platform for a heterogeneous Fenton-
like process can contribute to the formation of 
hydroxyl radicals via a chelating agent, thereby 
improving the removal performance of the reaction 
[71].

Apart from homogenous Fenton process, H2O2 
concentration can also determine the overall 
performance of the employed heterogeneous 
Fenton-like process, where Li et al. [72] reported 
that COD removal efficiency using heterogeneous 
UV-Fenton technique increases with an increase in 
H2O2 concentration followed by a descending trend 
with further increment in H2O2 concentration. 
Moreover, solution pH affects the concentration 
of H2O2 needed for COD removal. For example, 

 
 

 
Fig. 9. Scheme of the proposed mechanism of COD removal by means of a heterogeneous nano-Fenton-like 

oxidation process.  
Scheme. 1- The proposed mechanism of COD removal by means of a heterogeneous nano-Fenton-like oxidation process.
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a low dosage of H2O2 would be needed if solution 
pH is adjusted at 7, which is a favorable industrial 
condition in terms of cost management. Notably, 
the heterogeneous Fenton-like process that benefits 
nanocatalysts profoundly decreases the dosage 
of H2O2 compared to the conventional Fenton 
process. [73, 74].       

5. Conclusions
The present investigation strives to draw a 

meaningful comparison between the metalworking 
fluid (MWF) wastewater chemical oxygen 
demand (COD) removal ability of three different 
methods, including coagulation-flocculation, 
Fenton oxidation, and heterogeneous nano-zeolite 
catalyzing Fenton-like oxidation processes. 

The results indicated that a heterogeneous 
Fenton-like oxidation process benefiting easy-
to-made low-cost nanocatalyst gives the highest 
COD removal efficiency. This method ends up in 
the lowest sludge volume, while the coagulation-
flocculation route produced maximum sludge 
production.

A survey on the effects of nanocatalyst 
dosage and solution pH on COD removal 
efficiency revealed that a superior COD removal 
performance is achieved with an increase in 
nanocatalyst dosage, while the removal efficiency 
is not related to the solution pH. Moreover, this 
method preserves its high efficiency up to 20 
batches. The use of nano Fe-substituted zeolite 
catalyzing heterogeneous Fenton-like process not 
only eliminates the requirement for decreasing the 
pH value of the treated solution to strongly acidic 
amounts but also decreases the volume fraction of 
the produced sludge. Therefore, it overcomes two 
potential challenges facing the conventional Fenton 
process. It seems that the heterogeneous Fenton-
like oxidation process is a promising approach 
for remediation of MWF wastewater from the 
economic, technical, and environmental points of 
view.
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