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1. Introduction
Environmental pollution is increasing, and the 

world is becoming more attuned to the conservation 
of natural resources [1, 2]. The effluent from the 
textile industry is a complicated amalgamation 
of chemicals that fluctuates in both quality and 
quantity. It generates organic and inorganic 
waste that might alter chemical and biological 
parameters, while dye effluent may lead to 
observable environmental impacts [3-5].  Dyes and 
colored effluents can produce toxic, carcinogenic 
substances that contaminate water, constituting 
a significant offense. Ion exchange, chemical 
precipitation, and filtration are costly techniques 

for dye removal from water, potentially converting 
dyes into secondary contaminants necessitating 
additional treatment [6-12]. Adsorption is a low-
cost, efficient technique for dye removal, offering 
advantages such as simplicity, adaptability, and ease 
of operation, though it may also produce secondary 
pollutants [13, 14]. The semiconductor photo-
catalysts degrade organic compounds, chemicals, 
and dyes under light [15-17]. This method was 
acceptable and effective for degrading several 
harmful elements, such as organic and aquatic 
pollutants, giving it substantial advantages over the 
old method [18-20]. 

In ferrite components, the substitution of 
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magnetic and non-magnetic ions at various 
sublattices has led to interesting magnetic 
configurations and electrical characteristics [21]. 
Ferrites exhibit notable characteristics due to 
magnetic instability and frustration. Exchange 
contact competition results in unmet bonds, 
leading to magnetic dilution and diverse structures 
[22-26]. The magnetic and electrical characteristics 
of the spinel lattice are influenced by nonmagnetic 
ions. Isomorphous interactions in iron oxides 
diminish magnetic interactions, magnetic 
ordering temperatures, and magnetic-field super 
transfer. Al3+ ions in aluminum-substituted ferrites 
preferentially occupy the octahedral B-site [27-
31]. Various techniques have been described 
for the production of magnetic nanoparticles, 
including sol-gel, hydrothermal, co-precipitation, 
and sonochemical processes [32- 34]. Numerous 
approaches demonstrate drawbacks, such as high 
expenses, substantial energy usage, pollution 
from chemical precursors, and the production of 
toxic byproducts. The eco-friendly production of 
magnetic nanoparticles using plant extracts offers 
a viable alternative to chemical approaches, with 
polyphenols acting as natural reducing agents [35-
37].

In the current work, Cu0.5Zn0.5FeAlO4 was 
synthesized using a simple green technique. The 
morphology, structure, and optical properties 
were examined and described. The photocatalytic 
performance of the magnetic nanoparticles in 
degrading reactive blue 222 dye (Fig. 1) was 
investigated and reported.

2. Experimental
2.1. Chemicals 

Tragacanth gel (TG) was purchased from a 
nearby health food store. The all metal salts were 
obtained from Merck. 

2.2. Green synthesis of Cu0.5Zn0.5FeAlO4 MNPs
Cu0.5Zn0.5FeAlO4 MNPs were synthesized in a 

one-step green process following the previously 
described method [39]. The TG was first dissolved 
in distilled water to form a clear gel. Stoichiometric 
amounts of Cu(NO3)2·3H₂O, Zn(NO3)2·6H₂O, 
Al(NO3)3·9H₂O, and Fe(NO3)3·9H₂O were then 
added to the gel, and the mixture was maintained at 
75°C with continuous stirring for 10 h. The product 
was subsequently annealed at 600°C for 4 hours to 
obtain Cu0.5Zn0.5FeAlO4 MNPs.

2.3. Photocatalytic activity evaluation
The photocatalytic performance of 

Cu0.5Zn0.5FeAlO4 MNPs was evaluated by the 
photodegradation of reactive blue 222 dye under 
visible light. All procedures were performed in 
a photoreactor, with visible light supplied by a 
fluorescent lamp (λ > 400 nm, 80 W, Delta, Iran). 
To identify optimal degradation conditions, several 
concentrations of RB 222, MNPs amounts, and 
contact durations were evaluated. At specified 
intervals, a sample was taken, and the MNPs were 
separated using a magnetic field. Absorbance 
changes at λmax = 612 nm were measured using the 
UV–Vis technique to monitor RB 222 degradation. 
The degradation rates of RB 222 were later 
determined utilizing the following formula:

3. Results and discussion
3.1. Characterization

XRD analysis was performed to characterize the 
synthesized MNPs, and the results are shown in Fig. 
2. The diffraction peaks observed correspond to the 
cubic spinel phase of Cu0.5Zn0.5FeAlO4 as identified 
by JCPDS Card No. 82-1040. The sharp and narrow 
diffraction peaks indicate the high crystallinity of the 
nanoparticles. The crystallite size of Cu0.5Zn0.5FeAlO4 
MNPs was estimated using the Scherrer equation 
[40], and the calculated value was 12 nm.

Fig. 1- Structure of RB222 [38].
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The morphology of Cu₀.₅Zn₀.₅FeAlO₄ MNPs 
was studied using FESEM, as shown in Fig. 3a. It 
was determined that the synthesized nanoparticles 
exhibit spherical and irregular morphological 
characteristics. TEM analysis (Fig. 3b) was carried 
out to provide further evidence on the structural 
information of Cu0.5Zn0.5FeAlO4 MNPs. The TEM 
image of the nanoparticles shows average particle 
sizes of 25-30 nm.

In addition, EDX analysis (Fig. 4) provided 
conclusive evidence of the presence of iron (Fe), 
aluminum (Al), copper (Cu), zinc (Zn), and oxygen 

(O) as the primary components of the sample. 
The Mapping analysis (Fig. 4) also confirmed 
the material’s structural integrity and elemental 
distribution.

Figure 5 illustrates the magnetization 
measurements of Cu0.5Zn0.5FeAlO4 magnetic 
nanoparticles. The VSM curve shows that both 
the remanence (Mr) and coercivity (Hc) are 
zero, indicating superparamagnetic behavior. 
The saturation magnetization (Ms) is 3.74 
emu/g, signifying the magnetic properties of the 
nanoparticles. 
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Fig. 2- XRD pattern of Cu0.5Zn0.5FeAlO4 MNPs.

Fig. 3- a) FESEM image and b) TEM image of Cu0.5Zn0.5FeAlO4 MNPs.  
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Fig. 4- EDX pattern and elemental mapping of Cu0.5Zn0.5FeAlO4 MNPs.
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The N₂ adsorption-desorption isotherms 
and BJH pore size distribution diagram of 
Cu0.5Zn0.5FeAlO4 MNPs are shown in Figure 6. 
Fig. 6a shows the usual IUPAC classifications of 
type IV isotherms, which indicate a uniform pore 
size distribution in mesoporous materials. Surface 
analysis by BET showed a value of 46.348 m²g⁻¹. 
In Figure 6b, the BJH equation indicates that the 
nanoparticles have pores with a size of 6.06 nm 
[41]. 

The UV-Vis-DRS and Tauc plot of the 
synthesized Cu0.5Zn0.5FeAlO4 MNPs is shown in 
Figure 7. The band gap of the material is clearly 
seen to be around 1.95 eV from the graph. This 
result suggests the nanoparticles have suitable 
bandgap for visible-light photocatalysis and are 
potential photocatalytic candidates.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5- VSM curve of Cu0.5Zn0.5FeAlO4 NPs.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6- a) The N2 absorption/desorption isotherm b) BJH diagram of Cu0.5Zn0.5FeAlO4 NPs.

Fig. 7- a) UV-Vis-DRS and b) Tauc plot of Cu0.5Zn0.5FeAlO4 MNPs.
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3.2. Photocatalytic Activity of Cu0.5Zn0.5FeAlO4 
MNPs 

Figure 8a indicates that raising the quantity of 
Cu0.5Zn0.5FeAlO4 MNPs from 0.02 to 0.04 g enhanced 
degradation efficiency due to an increase in active 
sites and hydroxyl radical generation. Nevertheless, 
escalating the dosage to 0.05 g resulted in a very 
slight and nearly constant decrease in efficiency, 
possibly attributable to particle aggregation, which 
diminished the surface area and active sites, thereby 
attenuating the absorption of light [42]. Consequently, 
0.04 g was identified as the optimal dosage.

Figure 8b illustrates the influence of the initial 
RB222 concentration on degradation efficiency, 
evaluated at different dye concentrations (10 to 40 
mg/L), utilizing 0.04 g of Cu0.5Zn0.5FeAlO4 MNPs 
and a reaction duration of 45 min. The degradation 
efficiency decreased as the RB222 dye concentration 
increased, achieving 79% dye degradation at 40 
mg/L. Increased dye concentrations may prevent 
heat and energy transfer from cavitation, thereby 

restricting hydroxyl radical generation and 
diminishing degradation efficiency [43].

The process was investigated under three 
different conditions to evaluate the photocatalytic 
activity of Cu0.5Zn0.5FeAlO4 MNPs (Fig 9a). No 
degradation was observed under photolysis 
conditions (without MNPs). The catalyst adsorbed 
53% of the dye in 45 min when evaluated without 
visible light. However, in the presence of visible 
light, the photocatalytic performance was 95% 
dye degradation, which indicates that magnetic 
nanoparticles significantly enhance degradation 
under visible light. Experiments were conducted 
using fixed concentrations of Cu0.5Zn0.5FeAlO4 
MNPs and RB 222 under photocatalytic conditions 
to optimize the degradation time. After 45 min of 
visible-light irradiation, the absorbance of the RB 
222 dye significantly decreased, achieving 95% 
degradation (Fig 9b). Additionally, TOC analysis 
revealed 63% reduction, highlighting the high 
efficiency of the photocatalytic process.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8- The effect of a) Cu0.5Zn0.5FeAlO4 amount b) RB 222 concentration.

Fig. 9- a) Effect of visible light irradiation b) UV-Vis spectrum of RB 222 Dye during degradation.
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 A cyclic photocatalysis assessment was 
conducted over four iterations to determine 
the stability and reusability of the produced 
Cu0.5Zn0.5FeAlO4 MNPs (Fig. 10). Following each 
cycles, the nanoparticles were separated using 
magnet and washed with water prior to their 
reutilization in the subsequent run. The findings 
indicated that the nanoparticles effectively destroy 
RB222 dye.

The photocatalyst produces h⁺, O2•⁻, and •OH, 
which are responsible for dye degradation [44, 45]. 

In an effort to learn more about the photocatalytic 
process and active species, active-species trapping 
experiments were performed. The addition 
of ethanol (•OH scavenger) and EDTA (h⁺ 
scavenger) reduced the degradation of RB222 to 
52% and 61%, respectively (Fig. 11). The addition 
of benzoquinone (BQ) as an O₂•⁻ scavenger had 
a minor effect on the degradation. The results 
indicate that •OH is the main active species, while 
h⁺ acts as a cofactor and plays a secondary role in 
dye degradation.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10- Reusability of Cu0.5Zn0.5FeAlO4 MNPs.

Fig. 11- The Effect of Scavengers on RB222 Degradation.
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Compared to other photocatalysts, 
Cu0.5Zn0.5FeAlO4 nanoparticles degraded more 
efficiently and took less time to react (Table 1). 
Such nanoparticles also have some unique benefits 
such as superparamagnetic recovery and reuse, 
which make them ideally suited for applications. 
Moreover, they cannot be produced using toxic 
chemicals or solvents. Their sustainability is 
improved by this green, simple synthesis, which 
stands out from other catalysts that would 
otherwise require toxic reagents. Ultimately, 
Cu0.5Zn0.5FeAlO4 nanoparticles deliver high 
photocatalytic activity, magnetic separability, 
and nontoxic synthesis, making them attractive 
candidates for environmentally sound applications.

4. Conclusions
In conclusion, the eco-friendly synthesized 

magnetic Cu0.5Zn0.5FeAlO4 nanoparticles 
demonstrated excellent photocatalytic 
performance, achieving 95% degradation of 
reactive blue 222 dye under visible light irradiation 
within 45 minutes. The photocatalytic degradation 
was primarily driven by hydroxyl radicals (•OH) 
and holes (h⁺), which played key roles in breaking 
down the dye. TOC analysis demonstrated a 
63% reduction in total organic carbon, further 
confirming the effectiveness of the photocatalytic 
process. Additionally, the nanoparticles exhibited 
strong stability, maintaining high performance 
with minimal loss in activity over four cycles 
due to their magnetic properties, which allowed 
for easy recovery and reuse. This makes 
Cu0.5Zn0.5FeAlO4 nanoparticles a promising 
candidate for sustainable environmental 
applications.
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